Как посчитать мощность двигателя от объема

Формула мощности электродвигателя

Формула мощности электродвигателя может учитывать массу нюансов технологического процесса. Благодаря развитию IT-технологий сегодня найти способы расчета такого показателя не составляет труда. А вот выбрать в огромном количестве предложенных вариантов тот, который подойдет именно вам, как показывает практика, не так-то просто.

Чтобы вы не растерялись в огромном количестве методичек и рекомендаций интернета, предлагаем универсальный вариант формулы, который подойдет практически для любого случая. Выглядит она следующим образом.

P = T * Ω

,где:

  • P – потребляемая мощность электродвигателя (номинальная);
  • T – необходимый момент вращения на валу;
  • Ω – угловая скорость.

У экспликатов тоже есть свои формулы.

  1. Вращающий момент (T) считается как произведение требуемого усилия тяги и радиуса рабочего органа подключаемого механизма.
    • Усилие тяги (обозначается как Ft) можно рассчитать по формуле Ft = t*M*2,5, где t –коэффициент трения (берется из таблицы данных, для подшипников качения, например, он известен и равняется 0,02), а М – масса груза, который перемещает оборудование. Произведение корректируется на коэффициент Ньютона, который тоже известен и составляет 2,5.
  2. Радиус элемента вращения измеряют или берут из проектных/паспортных данных.
  3. Угловую скорость определяют так: Ω = число Пи (π, принимается как 3,14)*n/30 (n – частота вращательного движения механизма, которое приводит в действие электродвигатель – берется из паспорта). Чтобы электродвигателя хватило с учетом возможных перегрузок привода, угловая скорость, рассчитанная приведенным способом, корректируется в большую сторону на коэффициент 1,5.

При расчете мощности электродвигателя надо делать поправку на тип соединения обмоток статора, от которого зависит значение рабочего тока. В соединениях типа «звезда» ток меньше в 1,73 раза, чем в соединениях «треугольник». Соответственно, для «звезды» показатель тоже надо уменьшать в 1,73 раза.

Что это означает на практике?

Если отойти от теории, то график мощности и крутящего момента — это основные характеристики двигателя. Когда вы въезжаете на своем автомобиле в горку и пытаетесь поддерживать одну и ту же скорость, вам приходится сильнее нажимать на педаль газа. Многим при этом кажется, что мощность останется та же, т.к. скорость не меняется. Но это не так!

При движении в горку двигатель выдает большую мощность при тех же оборотах. (при неизменной передаче). Это легко проверить, взглянув на текущий расход топлива.

Также это объясняет, зачем двигателю нужна коробка передач, ведь для эффективного разгона и преодоления подъёмов нам необходимо поддерживать обороты в диапазоне максимальной мощности двигателя.

А вот электромобили обходятся без нее. Кривая крутящего момента и мощности у электродвигателя намного более линейна, и к тому же электродвигатель выдает куда большую мощность на низких оборотах.

Расчет по массе и времени разгона от нуля до сотни

Определить как измеряется мощность двигателя, можно также по общей массе авто и времени его разгона до 100 километров в час. К сожалению, у этого способа есть один крупный недостаток — итоговая формула является достаточно сложной и она может сильно меняться в зависимости от технических особенностей авто (тип привода, характер трансмиссии и так далее).

Поэтому мы Вам рекомендуем производить расчет мощности по массе и времени разгона не вручную, а с помощью готового калькулятора на нашем сайте.

Оптимальный алгоритм действий:

  1. Выполните разгон своего автомобиля от 0 до 100 километров в час. Определите время разгона любым удобным способом (обычно это делается с помощью бортового компьютера).
  2. Узнайте массу своей машины — сделать это можно с помощью все того же бортового компьютера, с помощью технической документации и так далее.
  3. Воспользуйтесь нашим калькулятором — введите массу и время разгона, выберите тип привода, укажите трансмиссию.

Мощность двигателя — как работает и что это такое,на что влияет

Изобретенный более 100 лет назад поршневой двигатель внутреннего сгорания (ДВС), на сегодняшний день все еще является самым распространенным в автомобилестроении. При выборе модели двигателя своего будущего автомобиля покупатель может предварительно ознакомиться с его основными характеристиками. В этой статье мы подробно расскажем об основных показателях двигателей внутреннего сгорания, что они собой представляют и как влияют на работу.

Важнейшими характеристиками двигателя являются его мощность, крутящий момент и обороты, при которых эта мощность и крутящий момент достигаются.

Обороты двигателя

Под широкоупотребимым термином «обороты двигателя» имеется в виду количество оборотов коленчатого вала в единицу времени (в минуту).

И мощность, и крутящий момент — величины не постоянные, они имеют сложную зависимость от оборотов двигателя. Эта зависимость для каждого двигателя выражается графиками, подобными нижеследующему:

Производители двигателей борются за то, чтобы максимальный крутящий момент двигатель развивал в как можно более широком диапазоне оборотов

(«полка крутящего момента была шире»), амаксимальная мощность достигалась при оборотах, максимально приближенных к этой полке.

Мощность двигателя

Чем выше мощность, тем большую скорость развивает авто

Мощность

— это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. При вращательном движении мощность определяется как произведение крутящего момента на угловую скорость вращения.

Мощность двигателя последнее время все чаще указывают в кВт, а ранее традиционно указывали в лошадиных силах.

Как видно на приведенном выше графике, максимальная мощность и максимальный крутящий момент достигаются при различных оборотах коленвала. Максимальная мощность у бензиновых двигателей обычно достигается при 5-6 тыс. оборотов в минуту, у дизельных — при 3-4 тыс. оборотов в минуту.

График мощности для дизельного двигателя:

Крутящий момент

Крутящий момент характеризует способность ускоряться и преодолевать препятствия

Крутящий момент

(момент силы) — это произведение силы на плечо рычага. В случае кривошипно-шатунного механизма, данной силой является сила, передаваемая через шатун, а рычагом — кривошип коленчатого вала. Единица измерения — Ньютон-метр.

Иными словами, крутящий момент характеризует силу, с которой будет вращаться коленвал, и насколько успешно он будет преодолевать сопротивление вращению.

На практике высокий крутящий момент двигателя будет особенно заметен при разгонах и при передвижении по бездорожью: на скорости машина легче ускоряется, а вне дорог — двигатель выдерживает нагрузки и не глохнет.

Виды мощности

Для определения характеристик двигателя применяют такие понятия мощности как:

Индикаторной называют мощность, с которой газы давят на поршень. То есть, не учитываются никакие другие факторы, а только давление газов в момент их сгорания. Эффективная мощность, эта та сила, которая передается коленчатому валу и трансмиссии. Индикаторная будет пропорциональной литражу двигателя и среднему давлению газов на поршень.

Также есть параметр, называемый литровой мощность двигателя. Это соотношение объема двигателя к его максимальной мощности. Для бензиновых моторов литровая мощность составляет в среднем 30-45 кВт/л, а у дизельных – 10-15 кВт/л.

Расчет мощности ДВС по производительности форсунок

Не менее эффективным показателем мощности автомобильного двигателя является производительность форсунок. Ранее мы рассматривали её расчет и взаимосвязь, поэтому, труда, высчитать количество лошадиных сил по формуле, не составит. Подсчет предполагаемой мощности происходит по такой схеме:

Где, коэффициент загруженности не более 75-80% (0,75…0,8) состав смеси на максимальной производительности где-то 12,5 (обогащенная), а коэффициент BSFC будет зависеть от того какой это у вас двигатель, атмосферный или турбированный (атмо — 0.4-0.52, для турбо — 0.6-0.75).

Узнав все необходимые данные, вводите в соответствующие ячейки калькулятора показатели и по нажатию кнопки «Рассчитать» Вы сразу же получаете результат, который покажет реальную мощность двигателя вашего авто с незначительной погрешностью. Заметьте, что вам совсем не обязательно знать все представленные параметры, можно расчищать мощность ДВС отдельно взятым методом.

Ценность функционала данного калькулятора заключается не в расчете мощности стокового автомобиля, а если ваш автомобиль подвергся тюнингу и его масса и мощность притерпели некоторые изменения.

Расчет по производительности форсунок

Форсунки — это детали-распылители, которые обеспечивают подачу топлива в цилиндры ДВС. Характер работы форсунок напрямую влияет на формат функционирования двигателя, поэтому подсчитать мощность движка можно по производительности форсунок.

Для подсчетов используется следующая сложная формула:

  • ПФ — это производительность 1 форсунки. Этот параметр обычно указывается в технической документации к двигателю (хотя в случае нового авто эти сведения можно узнать из бортового компьютера).
  • КФ — это количество форсунок. Этот параметр можно также узнать из технической документации либо с помощью бортового компьютера.
  • КЗ — коэффициент загруженности форсунок. Для большинства легковых автомобилей этот параметр равен 0,75-0,8.
  • ТТ — тип топливной смеси. Для бензина высокой очистки этот коэффициент обычно равен 12-13.
  • ТД — это тип двигателя. Для атмосферного движка этот параметр равен 0,4-0,5, для турбодвижка — 0,6-0,7.

Эта методика расчета является достаточно неточной, поскольку формула содержит множество поправочных коэффициентов, многие из которых не имеют точного цифрового выражения. Поэтому реальная мощность может отличаться от формульной на 10-15% (впрочем, это небольшая погрешность).

Ватт и другие единицы измерения мощности

Говоря о том, в чем измеряется мощность, необходимо знать, о чём идёт речь. Ватт – это величина, соответствующая 1 Дж/с. Она принята в Международной Системе Единиц. В каких единицах ещё измеряется мощность? Раздел науки астрофизика работает с единицей под названием эрг/с. Эрг – очень маленькая величина, равная 10-7 Вт.

Cила тока: формула

Ещё одна, поныне распространённая, единица из этого ряда – «лошадиная сила». В 1789 году Джеймс Ватт подсчитал, что груз весом 75 кг из шахты может вытащить одна лошадь и сделать это со скоростью 1 м/с. Исходя из подсчёта такой трудоёмкости, мощность двигателей допускается измерить этой величиной в соотношении:

1 л.с. = 0,74 кВт.

Интересно. Американцы и англичане считают, что 1 л.с. = 745.7 Вт, а русские – 735.5 Вт. Спорить, кто прав, а кто нет, не имеет смысла, так как мера эта внесистемная и не должна быть использована. Международная организация законодательной метрологии рекомендует изъять её из обращения.

В России при расчёте полиса КАСКО или ОСАГО используют эти данные силового агрегата автомобиля.

Цепь переменного тока

В цепи переменного сигнала напряжение и ток описываются с помощью следующих формул: U = Um*sin w*t и I = Im**sin w*, где: Um и Im — мгновенные значения величин (измеренные в определённое значение времени), а w — циклическая частота. Подставляя эти формулы в выражение для нахождения мощности, можно получить следующее: P = Um*Im *sin2w*t = U*I — U*I *cos2w*t, где U*I = Um*Im/2.

Исходя из полученного выражения, видно, что активная мощность состоит из двух частей — постоянной U*I и переменной U*I *cos2w*t, при этом среднее её значение находится как P = I*U. В электрической цепи, содержащей реактивную составляющую (например, индуктивность), значение мгновенной мощности будет вычисляться по формуле: q = u*i. Соответственно: u = Um *sinw*t и i = Im*sin (w*t — p/2) = -Im*cosw*t.

Подставив эти выражения в главную формулу можно получить следующее реактивное обозначение мощности Q = Um*Im*sinw*t*cosw*t = Um*Im*sin2w*t/2 = U*I *sin2w*t. Проанализировав это математическое определение, можно установить, что реактивная энергия состоит только из переменной части, которая изменяется с удвоенной частотой, при этом её среднее значение равно нулю.

Так как полная мощность равна сумме активной и реактивной энергий, то с учётом фазового сдвига для цепи переменного тока, содержащей активное сопротивление R и реактивное L, C, она будет равна: S = u*i = Um*Im*sin w*t*sin (w*t- φ). Раскрыв скобки и заменив мгновенные величины на действующие, получится: S =U*I*cos φ — U*I*cosφ*cos2w*t-U*i*sinφ*sin2w*t. Полная мощность состоит из сумм мгновенной активной мощности P = U*I*cosφ — U*I*cosφ*cos2w*t и мгновенной реактивной Q = -U*i*sinφ*sin2w*t. Отрицательное значение возникает из-за сдвига фаз, приводящего в определённый момент времени к противофазе. Итоговые же значения для цепи переменного тока будут равны P = U*I*cosφ и Q = U*I*sinφ.

В электротехнике существует такое понятие, как треугольник мощности. Представляет он собой прямоугольную геометрическую фигуру, катетами которой являются Q и P, а гипотенузой S. Угол между катетом и гипотенузой обозначается φ. Исходя из того, мощность равна:

  • активная — P = Z*I2;
  • реактивная — Q = X*I2;
  • полная — S = R*I.

Применив теорему Пифагора, получится формула для нахождения полной мощности S = (P 2 + Q 2)½.

«Механическая работа. Механическая мощность»

Код ОГЭ 1.16. Механическая работа. Формула для вычисления работы силы. Механическая мощность.

Работа силы – физическая величина, характеризующая результат действия силы.

Механическая работа А постоянной силы  равна произведению модуля вектора силы на модуль вектора перемещения  и на косинус угла а между вектором силы и вектором перемещения: А = Fs cos а.

Единица измерения работы в СИ – джоуль: = Дж = Н • м.
Механическая работа равна 1 Дж, если под действием силы в 1 Н тело перемещается на 1 м в направлении действия этой силы.

Анализ формулы для расчёта работы показывает, что механическая работа не совершается если:

  • сила действует, а тело не перемещается;
  • тело перемещается, а сила равна нулю;
  • угол между векторами силы и перемещения равен 90° (cos a = 0).

Внимание! При движении тела по окружности под действием постоянной силы, направленной к центру окружности, работа равна нулю, так как в любой момент времени вектор силы перпендикулярен вектору мгновенной скорости. Работа – скалярная величина, она может быть как положительной, так и отрицательной. Работа – скалярная величина, она может быть как положительной, так и отрицательной

Работа – скалярная величина, она может быть как положительной, так и отрицательной.

  1. Если угол между векторами силы и перемещения 0° ≤ а < 90°, то работа положительна.
  2. Если угол между векторами силы и перемещения 90° < a ≤ 180°, то работа отрицательна.

Работа обладает свойством аддитивности: если на тело действует несколько сил, то полная работа (работа всех сил) равна алгебраической сумме работ, совершаемых отдельными силами, что соответствует работе равнодействующей силы.

Примеры расчёта работы отдельных сил:

Работа силы тяжести: не зависит от формы траектории и определяется только начальным и конечным положением тела: A = mg(h1 – h2)

По замкнутой траектории работа силы тяжести равна нулю.Внимание! При движении вниз работа силы тяжести положительна, при движении вверх работа силы тяжести отрицательна

Работа силы трения скольжения: всегда отрицательна и зависит от формы траектории. Если сила трения не изменяется по модулю, то её работа А = –Fтр l , где l – путь, пройденный телом (длина траектории). Очевидно, что чем больший путь проходит тело, тем большую по модулю работу совершает сила трения. Работа силы трения по замкнутой траектории не равна нулю!

Мощность N – физическая величина, характеризующая быстроту (скорость) совершения работы и равная отношению работы к промежутку времени, за который эта работа совершена: .

Мощность показывает, какая работа совершается за 1 с.
Единица измерения мощности в СИ – ватт: = Дж/с = Вт.
Мощность равна одному ватту, если за 1 с совершается работа 1 Дж.

Может пригодиться! 1 л. с

(лошадиная сила) ~ 735 Вт.Внимание! Для случая равномерного движения (равнодействующая сила равна нулю) при расчете мощности отдельных сил, действующих на тело, получим  

Для равноускоренного движения (F = const)   где ʋср– средняя скорость движения за расчётный промежуток времени.

Конспект урока «Механическая работа. Механическая мощность».

Следующая тема: «Кинетическая и потенциальная  энергия» (код ОГЭ 1.17)

Расчет вала

Условие задачи:

К стальному валу, состоящему из 4-х участков длиной l1…l4 приложено четыре сосредоточенных момента М1…М4 (см. рис. 1 ).

Требуется:

Построить эпюру крутящих моментов Мкр, подобрать диаметр вала из расчета на прочность, построить эпюру максимальных касательных напряжений τmax, построить эпюру углов закручивания φ вала и определить наибольший относительный угол закручивания вала.

Нагрузки, кН×м:

  • М1 = -4,5;
  • М2 = -2,6;
  • М3 = -3,1;
  • М4 = -2,0;

Длина участков, м:

  • l1 = 0,9;
  • l2 = 0,6;
  • l3 = 0,9;
  • l4 = 0,4;
Указания:

Вычертить схему вала в соответствии с исходными данными. Знаки моментов в исходных данных означают: плюс – момент действует против часовой стрелки относительно оси Z, минус – по часовой стрелке (см. навстречу оси Z). В дальнейшем значения моментов принимать по абсолютной величине. Участки нумеровать от опоры. Допускаемое касательное напряжение для стали принимать равным 100 МПа.

Решение:

1. Определим методом сечений значения крутящих моментов на каждом силовом участке от свободного конца вала. Крутящий момент равен алгебраической сумме внешних моментов, действующих на вал по одну сторону сечения.

  • МIV = -М1 = -4,5 (кН×м);
  • МIII = -М1 — М2 = -4,5 — 2,6 = -7,1 (кН×м);
  • МII = -М1 — М2 – М3 = -4,5 – 2,6 – 3,1 = -10,2 (кН×м);
  • МI = -М1 — М2 – М3 – М4 = -4,5 – 2,6 – 3,1 – 2,0 = -12,2 (кН×м).

2. Подберем сечение вала из расчета на прочность при кручении по полярному моменту сопротивления для участка, где величина крутящего момента максимальная (без учета знака):

WP≥ Мкр/ .

Так как для круглого сечения полярный момент равен: Wр = πD3/16, то можно записать:

D ≥ 3√(16Мкр/π) ≥ 3√(16×12,2×103/3,14×) = 0,0855 м или D ≥ 85,5 мм.(Здесь и далее знак «√» означает квадратный корень из выражения)

В соответствии со стандартным рядом, предусмотренным ГОСТ 12080-66, принимаем диаметр вала D = 90 мм.

3. Определим угол закручивания для каждого участка вала по формуле:

φ = Мкр×l/G×Iр,

где G – модуль упругости 2-го рода; для стали G = 8×1010 Па;Ip – полярный момент инерции (для круглого сечения Iр = πD4/32 ≈ 0,1D4, м4). Произведение G×Iр = 8×1010×0,1×0,094 ≈ 524880 Н×м2 – жесткость сечения данного вала при кручении.

Расчитываем углы закручивания на каждом участке:

  • φI = -12,2×103×0,9/524880 = -0,0209 рад;
  • φII = -10,2×103×0,6/524880 = -0,0116 рад;
  • φIII = -7,1×103×0,9/524880 = -0,0122 рад;
  • φIV = -4,5×103×0,4/524880 = -0,0034 рад.

4. Определяем углы закручивания сечений вала, начиная от жесткой заделки (опоры):

  • φ0-0 = 0 рад;
  • φ1-1 = φI= -0,0209 рад;
  • φ2-2 = φI + φII= -0,0209 — 0,0116 = -0,0325 рад;
  • φ3-3 = φI + φII + φIII= -0,0209 — 0,0116 — 0,0122 = -0,0447 рад;
  • φ4-4 = φI + φII + φIII + φIV = -0,0209 — 0,0116 — 0,0122 -0,0034 = -0,0481 рад.

5. Определяем максимальное касательное напряжение на каждом силовом участке по формуле:

τmax = Мкр/Wp = 16Мкр/πD3≈ 5Мкр/D3.

Тогда:

  • τmaxIV = 5×-4,5×103/0,093 = -30864197 Па ≈ -30,086 МПа;
  • τmaxIII = 5×-7,1×103/0,093 = -48696844 Па ≈ -48,700 МПа;
  • τmaxII = 5×-10,2×103/0,093 = -69958847 Па ≈ -69,959 МПа;
  • τmaxI = 5×-12,2×103/0,093 = -83676268 Па ≈ -83,676 МПа.

6. Наибольший относительный угол закручивания Θmax определим по формуле:

Θmax = МКРmax/G×Iр = -12,2×103/524880 = 0,0232 рад/м.

7. По результатам расчетов строим эпюры крутящих моментов Мкр, касательных напряжений τmax и углов закручивания φ (см. рис. 2).

***

Учебные дисциплины
  • Инженерная графика
  • МДК.01.01. «Устройство автомобилей»
  • Общее устройство автомобиля
  • Автомобильный двигатель
  • Трансмиссия автомобиля
  • Рулевое управление
  • Тормозная система
  • Подвеска
  • Колеса
  • Кузов
  • Электрооборудование автомобиля
  • Основы теории автомобиля
  • Основы технической диагностики
  • Основы гидравлики и теплотехники
  • Метрология и стандартизация
  • Сельскохозяйственные машины
  • Основы агрономии
  • Перевозка опасных грузов
  • Материаловедение
  • Менеджмент
  • Техническая механика
  • Советы дипломнику
Олимпиады и тесты
  • «Инженерная графика»
  • «Техническая механика»
  • «Двигатель и его системы»
  • «Шасси автомобиля»
  • «Электрооборудование автомобиля»

Крутящий момент и лошадиная сила

Автолюбители нередко дискутируют друг с другом: чей двигатель мощнее. Но иногда и не представляют при этом, из чего складывается данный параметр. Общепринятый термин «лошадиная сила» был введён изобретателем Джеймсом Уаттом в XVIII веке. Он придумал его, наблюдая за лошадью, которая была запряжена в поднимающий уголь из шахты механизм. Он рассчитал, что одна лошадь за минуту может поднять 150 кг угля на высоту 30-ти метров. Одна лошадиная сила эквивалентна 735,5 Ватт, или 1 кВт равен 1,36 л.с.

В первую очередь, мощность любого мотора оценивают в лошадиных силах, и лишь потом вспоминают о крутящем моменте. Но эта тяговая характеристика тоже даёт представление о конкретных тягово-динамических возможностях автомобиля. Крутящий момент является показателем работы силового агрегата, а мощность – основным параметром выполнения этой работы. Эти показатели тесно связаны друг с другом. Чем больше производится двигателем лошадиных сил, тем больше и потенциал крутящего момента. Реализуется этот потенциал в реальных условиях через трансмиссию и полуоси машины. Соединение этих элементов вместе и определяет, как именно мощность может переходить в крутящий момент.

Простейший пример – сравнение трактора с гоночной машиной. У гоночного болида лошадиных сил много, но крутящий момент требуется для увеличения скорости через редуктор. Чтобы такая машина двигалась вперёд, надо совсем немного работы, потому что основная часть мощности используется для развития скорости.

Что касается трактора, то у него может быть мотор с таким же рабочим объёмом, который вырабатывает столько же лошадиных сил. Но мощность в этом случае используется не для развития скорости, а для выработки тяги (См. тяговый класс). Для этого она пропускается через многоступенчатую трансмиссию. Поэтому трактор не развивает высоких скоростей, зато он может буксировать большие грузы, пахать и культивировать землю, и т.д.

В двигателях внутреннего сгорания сила передаётся от газов сгорающего топлива поршню, от поршня – передаётся на кривошипный механизм, и далее на коленчатый вал. А коленвал, через трансмиссию и приводы, раскручивает колёса.

Естественно, крутящий момент двигателя не постоянен. Он сильней, когда на плечо действует бо́льшая сила, и слабей – когда сила слабнет или перестаёт действовать. То есть, когда водитель давит на педаль газа, то сила, воздействующая на плечо, повышается, и, соответственно увеличивается крутящий момент двигателя.

Мощность обеспечивает преодоление всевозможных сил, которые мешают двигаться автомобилю. Это и сила трения в двигателе, трансмиссии и в приводах автомобиля, и аэродинамические силы, и силы качения колёс и т.д. Чем больше мощность, тем большее сопротивление сил машина сможет преодолеть и развить большую скорость. Однако мощность – сила не постоянная, а зависящая от оборотов мотора. На холостом ходу мощность одна, а на максимальных оборотах – совершенно другая. Многими автопроизводителями указывается, при каких оборотах достигается максимально возможная мощность автомобиля.

Необходимо учитывать, что максимальная мощность не развивается сразу. Автомобиль стартует с места практически при минимальных оборотах (немного выше холостого хода), и для того, чтобы отмобилизировать полную мощность, требуется время. Тут и вступает в дело крутящий момент двигателя. Именно от него и будет зависеть, за какой отрезок времени автомашина достигнет своей максимальной мощности – то есть, динамика её разгона.

Зачастую водитель сталкивается с такими ситуациями, когда требуется придать автомобилю значительное ускорение для выполнения необходимого маневра. Прижимая педаль акселератора в пол, он чувствует, что автомобиль ускоряется слабо. Для быстрого ускорения нужен мощный крутящий момент. Именно он и характеризует приёмистость автомобиля.

Основную силу в двигателе внутреннего сгорания вырабатывает камера сгорания, в которой воспламеняется топливно-воздушная смесь. Она приводит в действие кривошипно-шатунный механизм, а через него – коленчатый вал. Рычагом является длина кривошипа, то есть, если длина будет больше, то и крутящий момент тоже увеличится.

Однако увеличивать кривошипный рычаг до бесконечности невозможно. Ведь тогда придётся увеличивать рабочий ход поршня, а вместе с ним и размеры двигателя. При этом уменьшатся и обороты двигателя. Двигатели с большим рычагом кривошипного механизма можно применить только лишь в крупномерных плавательных средствах. А в легковых автомашинах с небольшими размерами коленчатого вала не поэкспериментируешь.

Мощность двигателя

Расчет мощности двигателя автомобиля

5 популярных способа как вычислить мощность двигателя автомобиля используя такие данные как: — обороты двигателя, — объем мотора, — крутящий момент, — эффективное давление в камере сгорания, — расход топлива, — производительность форсунок, — вес машины — время разгона до 100 км.

Каждая из формул, по которой будет производиться расчет мощности двигателя автомобиля довольно относительная и не может со 100% точностью определить реальную лошадиную силу движущую машину. Но произведя подсчеты каждым из приведенных гаражных вариантов, опираясь не те или иные показатели, можно рассчитать, по крайней мене, среднее значение будь-то стоковый или тюнингованный движок, буквально с 10-ти процентной погрешностью. Мощность — энергия, вырабатываемая двигателем, она преобразуется в крутящий момент на выходном валу ДВС. Это не постоянная величина. Рядом со значениями максимальной мощности всегда указываются обороты, при которых можно её достигнуть. Точкой максимума достигается при наибольшем среднее эффективном давлении в цилиндре (зависит от качества наполнения свежей топливной смесью, полноты сгорания и тепловых потерь). Наибольшую мощность современные моторы выдают в среднем при 5500–6500 об/мин. В автомобильной сфере измерять мощность двигателя принято в лошадиных силах. Поэтому поскольку большинство результатов выводятся в киловаттах вам понадобится калькулятор перевода кВт в л.с

Как рассчитать мощность через крутящий момент

Самый простой расчет мощности двигателя авто можно определить по зависимости крутящего момента и оборотов. —Крутящий момент Сила, умноженная на плечо ее приложения, которую может выдать двигатель для преодоления тех или иных сопротивлений движению. Определяет быстроту достижения мотором максимальной мощности. Расчетная формула крутящего момента от объема двигателя: Мкр = VHхPE/0,12566, где VH – рабочий объем двигателя (л), PE – среднее эффективное давление в камере сгорания (бар). —Обороты двигателя — Скорость вращения коленчатого вала. Формула для расчета мощности двигателя внутреннего сгорания автомобиля имеет следующий вид: P = Mкр * n/9549 , где: Mкр – крутящий момент двигателя (Нм), n – обороты коленчатого вала (об./мин.), 9549 – коэффициент, дабы обороты подставлять именно в об/мин, а не косинусами альфа. Поскольку по формуле, результат получим у кВт, то при надобности также можно конвертировать в лошадиные силы или попросту умножать на коэффициент 1,36. Использование данных формул — это самый простой способ перевести крутящий момент в мощность. А дабы не вдаваться во все эти подробности быстрый расчет мощности ДВС онлайн, можно произвести, используя наш калькулятор. Но, к сожалению, данная формула отражает лишь эффективную мощность мотора которая не вся доходит именно до колес автомобиля. Ведь идут потери в трансмиссии, раздаточной коробке, на паразитные потребители (кондиционер, генератор, ГУР и т.п.) и это без учета таких сил как сопротивление качению, сопротивление подъему, аэродинамическое сопротивление.

Расчет мощности ДВС по производительности форсунок

Не менее эффективным показателем мощности автомобильного двигателя является производительность форсунок. Ранее мы рассматривали её расчет и взаимосвязь, поэтому, труда, высчитать количество лошадиных сил по формуле, не составит. Подсчет предполагаемой мощности происходит по такой схеме:

Где, коэффициент загруженности не более 75-80% (0,75…0,8) состав смеси на максимальной производительности где-то 12,5 (обогащенная), а коэффициент BSFC будет зависеть от того какой это у вас двигатель, атмосферный или турбированный (атмо — 0.4-0.52, для турбо — 0.6-0.75).

Узнав все необходимые данные, водите в соответствующие ячейки калькулятора показатели и по нажатию кнопки «Рассчитать» Вы сразу же получаете результат, который покажет реальную мощность двигателя вашего авто с незначительной погрешностью. Заметьте, что вам совсем не обязательно знать все представленные параметры, можно расчищать мощность ДВС отдельно взятым методом.

Ценность функционала данного калькулятора заключается не в расчете мощности стокового автомобиля, а если ваш автомобиль подвергся тюнингу и его масса и мощность притерпели некоторые изменения.

Подпишись

на наш канал вЯ ндекс.Дзене Еще больше полезных советов в удобном формате

Мощность машины зачастую становится наиболее важным критерием для выбора. Автомобили имеющие большее количество лошадиных сил, быстрее набирают скорость и считаются более эффективными. Данный показатель оказывает влияние и на стоимость авто.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector