Принципиальная схема гидросистемы

Зачем составляют чертежи и проекты водоснабжения и канализации

Все строительные объекты – промышленные, жилые или стратегические здания в той или иной мере оснащаются санитарно-техническими системами, имеющими некоторые общие характеристики и функции. Такие системы не единичны – они состоят из комплекса инженерно-коммуникационных схем и узлов, таких, как ГВС и ХВС, канализационные трассы, централизованное газоснабжение, магистрали мусоропровода, системы ливневой канализации и снегозадержания, отопительные агрегаты, электрические и связные коммуникации.

При наличии такого множества сложных систем все они должны быть приведены к единому стандарту, чтобы минимизировать риск возникновения аварийных ситуаций и других незапланированных неисправностей. Наиболее важные инженерные системы – канализация и водоснабжение, поэтому их планировка должна четко отражаться в чертежах и схемах сетей, с соблюдением всех принятых стандартами обозначений. Только соблюдая установленные ГОСТ условные обозначения, можно запустить объект, соответствующий правилам благоустроенности и комфортной эксплуатации.

  1. Водоснабжению в жилом массиве в общем и в отдельности в каждой квартире отводится своя роль – эти системы обеспечивают не только полноценную жизнедеятельность жильцов, но и сохраняют их здоровье. Поэтому, составляя проектную документацию, нельзя допустить ни малейшего отклонения в расчетах и чертежах, так как это в дальнейшем обязательно скажется и на образе жизни, и на здоровье людей, и на техническом состоянии систем.
  2. Канализация выводит из жилых помещений отработанную грязную воду, бытовые стоки и измельченные твердые отходы жизнедеятельности человека, эту же функцию выполняет и мусоропровод. Как и в водоснабжении, в системе канализации первый и необходимый агрегат – насос. Учитывая агрессивность среды и составляющих компонентов стоков, система должна быть максимально надежной на протяжении всего времени эксплуатации, а это означает, что к самым первым шагам – составлению чертежей и документации – необходимо относиться ответственно.

Все канализационные водостоки, краны трубопровода и газопровода на схемах, системы водоснабжения и канализации имеют свои условные символы и знаки обозначения чертежах проектов, которые везде должны отображаться одинаково. Из-за сложности составления подобных проектов такие работы рекомендуется доверять профессионалам, чтобы были соблюдены не только правильные условные знаки и обозначения водопровода, насосов, задвижек, канализации, труб и запорной арматуры на схеме, но и рассчитаны их параметры для длительной безремонтной эксплуатации.

Регулирование гидроцилиндров экскаватора

Регулирование гидроцилиндров надо проводить каждый раз, когда оператор меняет рабочее навесное оборудование, которое представлено такими видами:

  • рычажно-шарнирное;
  • телескопическое.

Чтобы удерживать рычажно-шарнирное устройство, применяют гидравлические цилиндры, позволяющие менять угол наклона стрелы, передвигать ковш. Телескопическое оборудование работает по принципу выдвижения или втягивания стрелы.

На машинах рычажно-шарнирного типа применяются ковши обратной и прямой лопаты, грейферный захват, погрузчик, на который можно поставить ковш требуемой емкости.

Среди особенностей рычажно-шарнирного оборудования отмечают:

  • Объем ковша 0,5-4 м³, что помогает проводить земляные работы разного уровня сложности.
  • Отлично помогают при монтаже, планировании или погрузке.
  • Созданы на основе специальных конструктивных схем, обладающих унифицированными агрегатами и узлами.
  • Передвигаются на гусеничном ходу или же пневмоколесах.
  • На поворотной платформе находится силовая установка, гидропривод, кабина водителя и навесное оборудование.
  • Навесное оборудование запускается при помощи силовых гидроцилиндров, поворот платформы и движение агрегата выполняется под управлением гидромоторов.

Гидравлическая система: преимущества и недостатки

Применение гидравлических систем

Основные сферы применения гидросистем:

  • промышленность, часто гидравлика является важным элементом металлорежущих станков, гидрооборудования, предназначенного для транспортировки продукции, ее погрузки/разгрузки и т.д.;
  • судостроение, гидравлика в данном случае применяете в рулевом управлении судна, а также при перемещении корабля на судоремонтном и судостроительном предприятии;
  • сельское хозяйство, именно через механизмы гидравлики происходит управление навесное оборудованием тракторов, комбайнеров и другой техники;
  • авиакосмическая отрасль, независимые или объединенные с пневматикой системы, применяются в шасси и управляющих устройствах;
  • строительная отрасль, вся спецтехника оснащена гидрофицированными узлами.

Преимущества и недостатки гидравлических систем

К преимущества гидросистем относится:

  1. Возможность перемещать и поднимать грузы/объекты больших габаритов и веса;
  2. Точное позиционирование и неограниченный диапазон скорости;
  3. Синхронность и плавность работы всей гидравлической системы;
  4. Повышенная надежность и долгий срок службы;
  5. Экономичность в работе и малогабаритные размеры.

Помимо достоинств, у гидравлических системы имеется несколько недостатков. А именно:

  1. Риск возгорания при работе. Большинство жидкостей в гидравлике – являются горючими;
  2. Гидросистемы и оборудование чувствительны к загрязнениям (распределители, быстро-разъемные соединения);
  3. Возможность протечек гидравлической жидкости. Необходимость регулярного сервисного обслуживания.

Расчет гидравлической системы

При разработке и проектировании систем применяются множество различных факторов. Приведем основные примеры таких факторов как: кинетический коэффициент вязкости жидкости, ее плотность, длина трубопроводов, диаметр штока гидроцилиндра и многие другое.

Для проведения быстрого расчета гидросистемы нами применяются определения:

  • характеристика насоса;
  • величина штоков;
  • рабочее давление (низкое, среднее, высокое или сверхвысокое);
  • характеристика гидравлических магистралей и всей системы в целом.

Виды гидравлических систем

Подразделяются гидросистемы на два типа: открытого и закрытого типа. Открытую конструкцию имеют обычно устройства малой и средней мощности. В более сложных системах закрытого типа вместо цилиндра используется гидродвигатель. Жидкость поступает в него из насоса, а затем снова возвращается в магистраль.

Классификация гидравлических машин

Гидравлические машины классифицируют по принципу действия и внутреннему строению.

Главное разделение – насосы и гидравлические двигатели.

К насосам относятся такие группы:

  1. Объёмные – это агрегаты, рабочий процесс которых, происходит переменно. В рабочую ёмкость через входную трубу попадает жидкость. После заполнения камеры, входная труба перекрывается задвижкой и в камере нагнетается давление (поршень). Открывается выводящая труба и жидкость покидает ёмкость. Задвижка закрывается, а на входе наоборот открывается. Процесс повторяется
  2. Динамические – в этих агрегатах, рабочая часть насоса, взаимодействует с жидкостью в проточной части. Потоку придаётся дополнительная кинетическая энергия, за счёт лопастей, винтов или вихревого потока.

Гидравлические двигатели разделяются на:

  1. Активные – в этом случае, поток распределяется по нескольким каналам, через которые он с большой скоростью ударяет в определённые лопасти турбины.
  2. Реактивные – это агрегат, в котором колесо вырабатывающее энергию, находится в ёмкости с большим давление под водой.

Однако у гидравлических двигателей, большинство моделей можно использовать как насос. Следовательно, они могут разделяться на объёмные и динамические.

Функции гидравлического разделителя

Гидрострелка – она же гидравлический разделитель, термогидравлический распределитель, гидроразделитель, бутылка, гидрораспределитель, гидравлическая стрелка. Всё это — названия одного и того же устройства для обвязки котла.

Прежде, чем изучить схему и изготовить гидрострелку, требуется выяснить, зачем она нужна, какие задачи она выполняет.

При конструировании независимой системы обогрева одной из основных сложностей постоянно становится точная балансировка ее функционирования. Нужно добиться, чтобы все оборудование и участки работали правильно. Каждый элемент полностью справлялся со своими задачами, но при этом не оказывал отрицательного воздействия на другие узлы.

Сделать это очень непросто, особенно при сложной, разветвленной системе с нескольким контурами, так как обычно у каждого контура есть своя схема термостатического управления, свой температурный градиент, собственная пропуская способность и необходимый уровень давления теплоносителя.

Чтобы связать все элементы в единую систему, как раз, используется гидравлическая стрелка для систем отопления. Этот прибор уравновешивает функционирование всех компонентов.

Как правило, термогидравлический распределитель работает с принудительной системой циркуляции, где на каждый контур установлен свой циркуляционный насос. Чтобы все контуры работали корректно, необходимо обеспечить точнейшую согласованность всех циркуляционных насосов. С этой задачей прекрасно справляется гидроразделитель.

Помимо этого, термогидравлический распределитель способен выполнять еще несколько полезных функций:

  • внизу гидрострелки имеется кран для периодического слива из системы скопившихся взвесей и осадков;
  • обеспечение максимального протока теплоносителя, поддержание гидравлического и температурного балансов;
  • обеспечивает минимальные потери давления, производительности и тепловой энергии;
  • защита котла от разницы температур подачи-обратки и теплового удара;
  • выравнивание циркуляционного объема жидкости в первичном и второстепенном контуре;
  • повышение КПД котла;
  • возможность вторичной циркуляции части теплоносителя в котловом контуре;
  • экономия электроэнергии и топлива;
  • сохранение постоянного объема котловой воды, благодаря подмесу;
  • компенсация дефицита расхода во второстепенном контуре;
  • снижение влияния насосов, обладающих различной мощностью квт, на вторичные контуры и котел;
  • создание условий для сепарации растворенных газов и шлама.

Еще одну важную функцию выполняет гидрострелка в системах с котлом из чугунного теплообменника. Чугун плохо воспринимает механические и термические удары. В результате резкого перепада температур теплообменник может треснуть. Чтобы свести к минимуму разницу температур, применяется гидравлический разделитель.

Основные условно графические обозначения

Переходим к рассмотрению самих обозначений элементов, выполненных по межгосударственным стандартам. Запомнив самые основные и наиболее часто встречающиеся, понимание многих схем станет куда легче.

Базовые изображения

Ни один электронный прибор не обходится без наличия в его устройстве резисторов, катушек, конденсаторов, транзисторов, диодов, контактов и переключателей. Причем некоторые модели элементов, такие как катушки и конденсаторы, имеют весьма малые размеры, в зависимости от своего номинала, поэтому новичкам не стоит удивляться их повсеместному применению, а узнать и запомнить, как они изображаются на чертежах.

Так, например, согласно ГОСТам:

  • резистор обозначается прямоугольником, размерами 4Х10мм;
  • Конденсатор – двумя параллельными отрезками, расстояние между которыми 1,5мм;
  • Катушки – дуговыми линиями, от 2 до 4, в зависимости от назначения;
  • Диоды – треугольниками, к вершине которых проведена параллельная основанию линия. Образованная графикой «стрелка» указывает в каком направлении диод открыт, а каком закрыт;
  • Транзисторы – окружность, диаметром 12мм, от которой исходят три линии или, по-другому, контакта. Стрелка внутри указывает на то, что данный вывод транзистора – эмиттер и к какому типу элемент относится (n-p-n или p-n-p);
  • Приборы, такие как амперметр, ваттметр или вольтметр обозначаются так же окружностью, но с диаметром 10мм и общепринятой буквенной аббревиатурой PA, PW и PV соответственно;
  • Контакты – разомкнутой линией, на одном конце которой проведен отрезок длиной 6мм под углом в 30°.

Линии проводок и токопроводов

Проводники на всех схемах изображаются, в основном, прямыми линиями, соединяющими элементы в нужной последовательности. Допускается нанесение данных над линией, для уточнения параметров подаваемого напряжения и тока на устройство в целом или на отдельную его часть. В таких случаях разрешается указывать:

  • Вид тока (постоянный, переменный, импульсный);
  • Значение напряжения;
  • Материал;
  • Способы прокладки проводки.
  • Отметки и пр.

Навесное оборудование гидроэкскаваторов

Гидросистемой в движение могут приводиться такие виды навесного оборудования, как:

  • ковш обратной или прямой лопаты;
  • грейфер;
  • зуб, предназначенный для рыхления грунта;
  • кран;
  • механизм для выполнения захватных работ.

Для различных моделей гидроэкскаватора продаются ковши, имеющие разную емкость и ширину, которые будут подходить для выполнения тех или иных видов работ. Для гусеничных моделей выпускаются ковши емкостью 1,5 и 2,8 м³, а для пневмоколесных — 0,65 и 0, 8 м³.

Любое погрузочное оборудование работает на кинематической схеме, которая позволяет передвигать ковш прямолинейно во время внедрения в грунт.

Дополнительно на гидроэкскаваторы навешивается крановая подвеска, обладающая функцией грузозахвата. Инструменты подобного типа служат для таких работ, как:

  • погрузочно-разгрузочные;
  • рыхлительные;
  • дробление мерзлых грунтов;
  • вскрытие дорожного покрытия;
  • бурение скважин;
  • планирование отвалов;
  • перенос камней.

Тот или иной тип оборудования, поставленного на гидравлический агрегат, применяется при строительстве различных объектов. Распространение получили универсальные гидроэкскаваторы, работающие на полноповоротной платформе.

Агрегаты передвигаются на гусеницах и способны переносить большие нагрузки. Универсальные машины можно быстро переоборудовать, провести самостоятельную регулировку системы и узлов, навесить ковш нужного объема.

Например, часто надо заменять прямые лопаты с челюстным ковшом (емкость варьируется от 8 до 14 м³) на обратные лопаты. В этом случае принцип работы гидравлического экскаватора состоит в том, чтобы работать с удлиненной рукоятью и стрелой. Гидросхема также позволяет выполнять работы на большой глубине.

Навесное оборудование по типам выполняемых работ можно поделить на несколько групп:

  1. Прямая лопата подходит для того, чтобы проводить разработку земли в забое.
  2. Обратная лопата нужна для того, чтобы рыть выемки, которые находятся ниже уровня стоянки агрегата.
  3. Обратная лопата может выполнять работы и возле стен или других подобных конструкций. Например, с ее помощью вырываются траншеи, чьи оси не совпадают с продольной осью экскаватора.
  4. Грейфер используют для проведения погрузочно-разгрузочных работ, рытья скважин и котлованов большой глубины. Устанавливаются регулируемые грейферы. При необходимости проводится диагностика оборудования и внутренних систем. Такая диагностика позволяет настроить нужное давление на грунт, чтобы ковш легко врезался в почву.
  5. Челюстной ковш помогает зачерпывать породу, копать, выгружать землю.
  6. Погрузчик применяется в том случае, когда возникает необходимость провести погрузку мелкокусковых и сыпучих материалов выше уровня стоянки экскаватора. Применяется погрузчик и для высыпания пород в автосамосвалы, выгрузки грунтов, в том числе и слежавшихся.

Таким образом, в нужный момент оператор может самостоятельно провести смену навесного оборудования и отрегулировать детали гидравлической системы, цилиндров, применяемых инструментов. Если при настройке ковша и стрелы возникнут проблемы, необходимо вызвать специалистов по навесному устройству.

Как подключить гидравлическую стрелку?

У термогидравлического распределителя своя схема подсоединения, такая же простая, как и его устройство. Основная часть правил касается не столько подключения, сколько расчета пропускной способности и расположения выводов. И все же, понимание развернутой информации даст возможность осуществить монтаж правильно, а также удостовериться в пригодности подобранной гидрострелки для монтажа в конкретную отопительную систему.

Важнейшее, что необходимо ясно понять – гидроразделитель будет функционировать исключительно в системах отопления с принудительной циркуляцией. При этом в системе должго быть, как минимум два насоса: один в контуре генерационной части и еще один в потребительской. При других обстоятельствах гидравлический распределитель будет выполнять роль шунта с нулевым сопротивлением и, следовательно, закоротит собой всю систему.

Гидравлическая стрелка подсоединяется к прямому и возвратному трубопроводам котла или нескольких котлов. Конечно, при подключении устройства не должно быть и намёка на сужение условного прохода. Это условие заставляет применять в обвязке котла и при подключении коллектора трубы с очень значительным условным проходом, что несколько осложняет оптимизацию расстановки оборудования и увеличивает количество материалов для обвязки.

Гидросистемы с регулируемым насосом и дросселем

На
рис.10.1 изображена типовая схема
гидросистемы с регулируемым насосом
3, приводимым во вращение электродвигателемМ,
с трехпозиционным четырехходовым
распределителем 2 с ручным управлением,
с помощью которого осуществляется
реверс поршня силового цилиндра 1. В
среднем положении распределителя 2 все
его каналы соединяются с баком 5, что
соответствует холостому ходу (разгрузке)
насоса и «плавающему» состоянию
поршня цилиндра. Насос 3 снабжен фильтром
4, установленным на всасывающем
трубопроводе, и предохранительным
клапаном 6.

На рис.10.2 представлена
схема гидросистемы с регулируемым
дросселем, установленным в линии подачи
(на входе). В схеме предусмотрено
соединение полостей цилиндра, для
обеспечения чего применен утапливаемый
с помощью упоров 4 на штоке цилиндра
четырехходовой переключатель 5.

Система включает
нерегулируемый насос 9 с предохранительным
клапаном 7, трехпозиционный четырехходовой
распределитель 6 с ручным управлением,
регулируемый дроссель 2 и двухпозиционный
переключатель 5 с приводом от упора 4
движущегося штока силового цилиндра 3
и с установкой в исходное (верхнее)
положение под действием пружины.

В среднем положении
распределителя 6, представленного на
рис.10.2 все его каналы соединены между
собой и с баком, что соответствует
разгрузке насоса и «плаванию»
поршня цилиндра.

Рис.10.1.
Схема типовой
гидросистемы с
регулируемым насосом

Рис.10.2.
Гидросистема с дроссельным
управлением

Положение
распределителя в левой его позиции
(жидкость поступает в перерывающиеся
каналы правого поля распределителя)
соответствует движению поршня силового
цилиндра 3 вправо (жидкость от насоса
поступает в левую полость), причем в
этом положении распределителя 6 и
утопленного переключателя 5 жидкость
как от насоса, так и из нерабочей (правой)
полости цилиндра 3 поступает в левую
его полость (в этом случае рабочей
площадью цилиндра является площадь
сечения штока), что способствует
ускоренному перемещению поршня вправо.
После того, как нажатие упора 4 на
переключатель 5 прекратится, он под
действием пружины переместится вверх
и отсечет левую полость цилиндра 3 от
правой, соединив последнюю через
распределитель с баком 8. В результате
в левую полость цилиндра будет поступать
лишь жидкость, проходящая через
регулируемый дроссель 2, что соответствует
регулируемому рабочему ходу поршня
цилиндра 3.

При установке
распределителя 6 в правое положение
жидкость от насоса 9 поступает при
неутопленном переключателе 5 в правую
полость цилиндра 3, осуществляя обратный
ход поршня. При этом жидкость, вытесняемая
из левой полости цилиндра 3, поступает
через дроссель 2 и обратный клапан 1 в
бак.

При нажатии в этом
случае на переключатель 5 канал насоса
перекроется.

Рис.10.3. Гидросистема
с цилиндром одностороннего действия

На рис.10.3, а
представлена схема гидросистемы с
силовым цилиндром 1 одностороннего
действия и регулируемым насосом 4.
Гидросистема упра-вляяется трехходовым
двух-позиционным распределителем 2 с
ручным приводом. Для предохранения от
перегрузок система снабжена
предохранительным клапаном 3.

В положении
распределителя 2, представленном на
рис.10.3, а, жидкость от насоса поступает
в силовой цилиндр 1. Линия бака при этом
перекрыта. При перемещении распределителя
в противоположное положение выходной
канал насоса 4 перекрывается, а цилиндр
1 соединяется с баком, в результате
поршень цилиндра под действием веса
приводимого узла опускается вниз.
Скорость опускания регулируется с
помощью дросселирования отводимой
жидкости распределителем 2.

При применении в
последней схеме трехходового
трехпозиционного распределителя
(рис.10.3, б) можно обеспечить в среднем
его положении запирание жидкости в
силовом цилиндре 1 (для удержания,
например, груза в поднятом положении)
при одновременном соединении насоса 4
с баком.

Устройство и принцип работы гидропривода

Структурно гидропривод состоит из насоса (-ов), контрольно-регулирующей и распределительной аппаратуры, гидродвигателя (-лей), рабочей жидкости, емкости (бака) для ее содержания и средств (фильтров и охладителей), сохраняющих ее качества, а также соединительной и герметизирующей арматуры.

На рис. 2.1. изображена схема изучаемого объемного гидропривода состоящего из насоса 1, предохранительного клапана 2, распределителей 3 и 4, гидравлических двигателей – гидромотора 5 и гидроцилиндра 6, замедлительного устройства 7 опускания груза 8, бака и установленного в сливную гидролинию фильтра 9 сблокированного клапаном 10.

Рис. 2.1 Схема изучаемого гидропривода.

Насос 1 предназначен для преобразования механического энергетического потока, поступающего от первичного энергетического источника 11 (электрического или топливного двигателя) в гидравлический энергетический поток, т.е. в поток рабочей жидкости под давлением, который в зависимости от положений (позиций) затворов распределителей 3, 4 может направляться непосредственно (холостой режим) или через один или оба вместе гидравлические двигатели 5, 6 (рабочий режим) в бак. При этом величина давления на выходе из насоса зависит от совокупности сопротивлений, встречаемых потоком рабочей жидкости на пути от насоса до бака. В тех случаях, когда распределители 3, 4 находятся в позициях «А» (см. рис. 2.1), поток рабочей жидкости от насоса 1 проходит в бак через упомянутые распределители, гидролинии и фильтр 9 (холостой режим). Величина давления на выходе из насоса составляет:

,

где – величины давлений необходимых для преодоления потоком рабочей жидкости сопротивлений, соответственно, участков гиролиний, распределителей и фильтра.

В тех случаях, когда по команде извне один или оба распределители 3, 4 переводятся в любое положение «Б» или «В», в работу включается (-ются), соответственно, один или оба гидродвигатели. Направление движения гидродвигателей зависит от положения «Б» и «В» их распределителей. Когда в работу включен только один гидродвигатель, например гидромотор 5, рабочее давление на выходе из насоса составит:

,

где – потери давления на преодоление сопротивления распределителя 3, 4

– потери давления на привод гидромотора 5, зависящие от преодолеваемой нагрузки на его валу.

В том случае, когда в работу одновременно включены гидромотор 5 и гидроцилиндр 6, то их совместная работа возможна только при одинаковых потребных давлениях. Если у одного из них потребное давление ниже, чем у другого, то их совместная работа невозможна, так как поток жидкости в основном будет уходить в сторону меньшего сопротивления и нарушать нормальную работу гидропривода в целом.

Если в гидроприводе потребное давление превышает допустимое, срабатывает предохранительный клапан 2 и отводит через себя поток рабочей жидкости от насоса 1 в бак (режим перегрузки), обеспечивающий этим ограничение давления в гидроприводе и защиту его элементов от разрушения.

Для обеспечения плавности опускаемых грузов (рабочих органов) в гидроприводах используются замедлительные устройства (см. рис. 2.1, поз 7), обычно состоящие из обратного клапана и дросселя. При подъеме груза (рабочего органа) рабочая жидкость в цилиндр поступает через обратный клапан и дроссель. При опускании груза жидкость из полости цилиндра уходит в бак только через дроссель, который оказывает ей сопротивление, величина которого зависит от величины ее потока и этим обеспечивает плавность его опускания. При этом противоположная полость гидроцилиндра заполняется жидкостью подаваемой насосом. В случае избыточного количества подаваемой насосом жидкости ее часть будет отводиться на слив через предохранительный клапан 2.

Для визуального контроля давления в гидроприводе предназначен манометр 12. Для обеспечения очистки рабочей жидкости от твердых загрязнителей (абразивов, продуктов изнашивания), в гидроприводах используют различного конструктивного исполнения фильтры.

Принцип работы гидравлики автокрана

Схема гидравлики автокрана при движении стрелы

Гидравлическая система грузоподъемного крана состоит из узлов и механизмов, которые заставляют гидравлическую жидкость под давлением циркулировать по трубопроводам. В результате оказывается давление на гидроцилиндры, выталкивающие в результате этого воздействия подвижные элементы крана.

Устройство системы гидравлики автокрана включает серию гидропередач. Под гидропередачей понимают соединение гидравлического насоса, мотора и двух механизмов. Вместе они образуют силовой редуктор. В качестве рабочей среды в гидравлике автокрана используется гидравлическое масло, а насос (гидродвигатель) выступает в роли передаточного звена

Важное условие работы гидравлики автокрана — система должна быть герметичной. При нарушении ее целостности падает давление, и механизмы перестают двигаться с нужной амплитудой

В этом случае потребуется ремонт гидравлики автокрана, предполагающий замену износившихся и поврежденных компонентов (насоса, шлангов, прокладок).

На сегодняшний день система гидравлики автокрана реализуется по гидростатическому или объемному принципу. Силовой редуктор преобразует вращательное движение насоса в возвратно-поступательное (для систем гидравлики с силовыми цилиндрами) или изменяет характер вращательного движения (для систем гидравлики с моторов с вращающимся валом).

Расход масла в гидравлике автокрана не остается постоянным. (О том как и когда менять гидравлическое масла, читайте тут). Он меняется с изменением скорости движения поршня в цилиндре или вращения вала, если речь идет о моторе с вращающимся валом.

Гидравлика автокрана дает возможность постепенно, без рывков регулировать скорости и передаточное отношение. При этом диапазон передач получается гораздо больше, чем у других механизмов.

В устройстве системы гидравлики автокрана механизм регулировки может быть реализован двумя способами:

  1. посредством регулировки гидравлических узлов;
  2. посредством регулировки потока жидкости.

Система гидравлики современных автокранов предусматривает раздельную установку гидромотора и насоса, которые соединяются друг с другом шлангами.

Главное преимущество объемного устройства системы гидравлики автокрана заключается в том, что к одному насосу можно подключить несколько гидравлических двигателей. Это дает возможность разделить мощности и обеспечить стабильную и бесперебойную работу механизма, а также подключение дополнительных сил, когда надо поднимать тяжелые грузы.

Недостатком объемного устройства гидравлики автокрана можно назвать чувствительность к износу компонентов. Незначительное изменение геометрии, потеря герметичности и другие проявления износа вызывают уменьшение рабочей скорости. В этой связи ремонт гидравлики автокрана необходимо производить регулярно и не игнорировать малейшие изменения в эффективности гидравлической системы.

Гидравлика автокрана выдерживает колоссальные нагрузки. Рассмотрим далее, из каких компонентов она состоит и как они взаимодействуют друг с другом.

Зачем нужна гидравлическая схема?

Гидравлическая схема состоит из простых графических символов компонентов, органов управления и соединений. Рисование деталей стало более удобное, а символы универсальнее. Поэтому, при обучении каждый может понять обозначения системы. Гидравлическая схема обычно предпочтительна для объяснения устройства и поиска неисправностей.

Два рисунка показывают, что верхний является гидравлической схемой нижнего рисунка. Сравнивая два рисунка, заметьте, что гидравлическая схема не показывает особенности конструкции или взаимное расположение компонентов цепи. Назначение гидравлической схемы — показать назначение компонентов, места соединений и линии потоков.

Символы насоса

Основной символ насоса — это круг с чёрным треугольником, направленным от центра наружу. Напорная линия выходит из вершины треугольника, линия всасывания расположена напротив.

Таким образом, треугольник показывает направление потока.

Этот символ показывает насос постоянной производительности.

Насос переменной производительности обозначается на рисунке со стрелкой, проходящей через круг под углом 15°

Символы привода

Символ мотора

Символом мотора является круг с чёрными треугольниками, но вершина треугольника направлена к центру круга, чтобы показать, что мотор получает энергию давления.

Два треугольника используются для обозначения мотора с изменяемым потоком.

Мотор переменной производительности с изменением направления потока обозначается со стрелкой, проходящей через круг под углом 45°

Символы цилиндра

Символ цилиндра представляет прямоугольник, обозначающий корпус цилиндра (цилиндр) с линейным обозначением поршня и штока. Символ обозначает положение штока цилиндра в определённом положении.

Цилиндр двойного действия

Этот символ имеет закрытый цилиндр и имеет две подходящие линии, обозначенные на рисунке линиями.

Цилиндр однократного действия

К цилиндрам однократного действия подводится только одна линия, обозначенная на рисунке линией, противоположная сторона рисунка открыта.

Направление потока

Направление потока к и от привода (мотор с изменением направления потока или цилиндр двойного действия) изображается в зависимости от того, к какой линии подходит привод. Для обозначения потока используется стрелка.

Символы клапана — 1

1) Распределительный клапан

Основной символ распределительного клапана — это квадрат с выходными отверстиями и стрелкой внутри для обозначения направления потока. Обычно, распределительный клапан управляется за счёт баланса давления и пружины, поэтому на схеме мы указываем пружину с одной стороны и пилотную линию с другой стороны.

Обычно закрытый клапан

Обычно закрытый клапан, такой как предохранительный, обозначен стрелкой противовеса от отверстий напрямую к линии пилотного давления. Это показывает, что пружина удерживает клапан в закрытом состоянии до того, как давление не преодолеет сопротивление пружины. Мы мысленно проводим стрелку, соединяя поток от впускного к выпускному отверстию, когда давление возрастает до величины преодоления натяжения пружины.

Предохранительный клапан

На рисунке представлен предохранительный клапан с символом обычно закрытый, соединённый между напорной линией и баком. Когда давление в системе превышает натяжение пружины, масло уходит в бак.

Примечание:

Символ не указывает или это простой или это сложный предохранительный клапан

Это важно для указания их функций в цепи.. Рабочий процесс:

Рабочий процесс:

(а) Клапан всегда остаётся закрыт

(b) Когда давление появляется в главном контуре, тоже самое давление действует на клапан через пилотную линию и когда это давление преодолевает сопротивление пружины, клапан открывается и масло уходит в бак, тем самым снижая давление в главном контуре.

Обычно открытый клапан

Когда стрелка соединяет впускной и выпускной порты, значит клапан обычно открыт
. Клапан закрывается, когда давление преодолевает сопротивление пружины.

Клапан уменьшения давления обычно открыт и обозначается, как показано на рисунке ниже. Выпускное давление показано напротив пружины, чтобы устанавливать или прерывать поток, когда будет достигнута величина для сжатия пружины.

Рабочий процесс:

(а) Масло течёт от насоса в главный контур и А

(b) Когда выпускное давление клапана становится выше установленного давления, поток масла от насоса остановлен и давление в контуре А сохраняется. На него не действует давление главного контура.

(с) Когда давления в контуре А падает, клапан возвращается в состояние (а). Поэтому, давление в контуре А сохраняется, потому что охраняются условия (а) и (b)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector