Описание и принцип работы турбонаддува двигателя
Содержание:
- Необходимые дополнения в состав системы турбонаддува: клапаны, интеркулер
- Турбированный мотор: достоинства и недостатки
- Турбокомпрессор, приводимый в действие отработавшими газами, с подводом дополнительной энергии
- Турбонаддув TDI: турбина с изменяемой геометрией
- Турбированный двигатель, плюсы и минусы
- Преимущества турбокомпрессора.
- Как работает
- Устройство и принцип работы турбокомпрессора
- Принцип работы турбинного двигателя на автомобиле
- Автомобильные турбины: Функции и как увеличить срок службы
Необходимые дополнения в состав системы турбонаддува: клапаны, интеркулер
Не один десяток лет потребовался инженерам, чтобы создать действительно эффективно работающий турбокомпрессор. Ведь это только в теории всё выглядит гладко: от преобразования энергии отработанных газов можно «вернуть» утерянный процент КПД и значительно увеличить мощность двигателя (например, со ста до ста шестидесяти лошадиных сил). Но на практике подобного почему-то не получалось.
Кроме того, при резком нажатии на акселератор приходилось ждать увеличения оборотов мотора. Оно происходило только через некоторую паузу. Рост давления выхлопных газов, раскрутка турбины и загонку сжатого воздуха происходили не сразу, а постепенно. Данное явление, именуемое «turbolag» («турбояма») никак не удавалось укротить. А справиться с ним получилось, применив два дополнительных клапана: один – для перепускания излишнего воздуха в компрессор через трубопровод из двигательного коллектора. А другой клапан – для отработанных газов. Да и в целом, современные турбины с изменяемой геометрией лопаток даже своей формой уже значительно отличаются от классических турбин второй половины ХХ века.
Дизельный турбокомпрессор «Бош»
Другая проблема, которую пришлось решать при развитии технологий дизельных турбин, состояла в избыточной детонации. Детонация эта возникала из-за резкого увеличения температуры в рабочих полостях цилиндров при нагнетании туда дополнительных масс сжатого воздуха, особенно на завершающей стадии такта. Решать данную проблему в системе призван промежуточный охладитель наддувочного воздуха (интеркулер).
Интеркулер – это не что иное, как радиатор для охлаждения наддувочного воздуха. Кроме снижения детонации, он снижает температуру воздуха ещё и для того, чтоб не снижать его плотность. А это неизбежно во время процесса нагрева от сжатия, и от этого эффективность всей системы в значительной степени падает.
Кроме того, современная система турбонаддува двигателя не обходится без:
- регулировочного клапана (wastegate). Он служит для поддержания оптимального давления в системе, и для его сброса , при необходимости, в приёмную трубу;
- перепускного клапана (bypass-valve). Его предназначение – отвод наддувочного воздуха назад во впускные патрубки до турбины, если нужно снизить мощность и дроссельная заслонка закрывается;
- и/или «стравливающего» клапана (blow-off-valve). Который стравливает наддувочный воздух в атмосферу в том случае, если дроссель закрывается и датчик массового расхода воздуха отсутствует;
- выпускного коллектора, совместимого с турбокомпрессором;
- герметичных патрубков: воздушных для подачи воздуха во впуск, и масляных – для охлаждения и смазки турбокомпрессора.
Турбированный мотор: достоинства и недостатки
Популярность турбодвигателей вызвана их преимуществами перед обычными, заключающимися в:
- увеличении мощности до 30% и уменьшении расхода топлива (турбомотор будет потреблять меньше горючего, нежели ДВС аналогичной мощности, но без турбины);
- уменьшении загрязнения окружающей среды;
- лучшем соотношении веса агрегата к развиваемой мощности;
- более тихой работе механизма;
- возможности оптимизировать другие параметры двигателя.
Однако есть и свои минусы:
- требовательность к качеству масла и бензина, что в конечном итоге повышает расходы на эксплуатацию авто;
- сложный ремонт, требующий применения специального оборудования, выполнить который своими силами маловероятно. Нередко турбина и вовсе оказывается непригодной к ремонту, а её полная замена заметно ударяет по кошельку автовладельца.
Турбокомпрессор, приводимый в действие отработавшими газами, с подводом дополнительной энергии
Современные турбокомпрессоры, приводимые в действие отработавшими газами, характеризуются высокими уровнями к.п.д. и малым моментом инерции ротора, что позволяет получить очень хорошие скорости повышения давления наддува в переходных режимах, в особенности в сочетании с дополнительными мерами на двигателе, такими как, например, «продувка». Был предложен ряд технических решений, позволяющих в случае недостаточной энергии отработавших газов быстрее разогнать ротор компрессора, используя дополнительный механический или электрический привод.
Например, установка на вале турбокомпрессора зубчатого колеса позволяет передавать на вал дополнительную энергию от коленчатого вала через редуктор и отключаемую соединительную муфту. Что касается большой разницы скоростей вращения коленчатого вала и ротора, это представляет собой проблему для конструкторов в отношении обеспечения требуемой эффективности и долговечности
Еще один подход предусматривает установку на роторе между подшипниками рабочего колеса турбины Пельтона, которое герметизируется подаваемым под высоким давлением (приблизительно 100 бар) моторным маслом из системы смазки двигателя или гидравлической жидкостью, подаваемой по отдельному контуру. При этом необходимо решить проблемы, связанные с присутствием в моторном масле частиц сажи, соударяющихся с высокой скоростью со стенками корпуса и лопатками, что может вызывать нарушение их прецизионной геометрии. Применение отдельного гидравлического контура связано с необходимостью в увеличении размеров корпусов подшипников, которые должны быть эффективно отделены от других сред.
Еще одно предложение заключается в установке на валу турбокомпрессора, например, между подшипниками, электродвигателя с регулируемым приводом («турбокомпрессор, приводимый в действие отработавшими газами с вспомогательным электроприводом»). Здесь имеют место ограничения, налагаемые 12-вольтовой электрической системой автомобиля в отношении требуемого для работы привода мощности. Турбокомпрессор с вспомогательным электроприводом при некоторых условиях может работать в качестве генератора, возвращая электроэнергию в электрическую систему двигателя, однако, отказаться при этом от перепускной заслонки не представляется возможным.
Общим для всех этих подходов является то, что, когда подвод дополнительной энергии не требуется, все дополнительные компоненты, установленные на вале турбокомпрессора, все равно приводятся во вращение, подвергаясь значительным тепловым нагрузкам и вызывая потери мощности. Следует продолжить рассмотрение возможности практической реализации этих подходов, а также возможности подвода дополнительной энергии независимо от рабочего состояния двигателя, но таким образом, чтобы это не вызвало изменения или сдвига рабочей характеристики применяемого компрессора. Следует также отметить, что реализация вышеописанных решений связана со значительными затратами и, следовательно, увеличением цены автомобиля. Ни один из вышеуказанных подходов не был реализован в серийном производстве.
РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:
Турбонаддув TDI: турбина с изменяемой геометрией
От эффективности работы турбоанддува TDI в значительной мере зависит не только динамика, но и экономичность наряду с экологичностью. Правильное наддува воздуха должно быть реализовано в максимально широком диапазоне. По этой причине на моторы TDI ставится турбокомпрессор с изменяемой геометрией турбины.
Ведущие производители турбин в мире используют следующие названия:
- Турбина VGT (от англ. Variable Geometry Turbocharger, что означает турбокомпрессор с изменяемой геометрией). Производится BorgWarner.
- Турбокомпрессор для дизеля VNT (от англ. Variable Nozzle Turbine, что означает турбина с переменным соплом). Это название использует фирма Garrett.
Турбонагнетатель с изменяемой геометрией отличается от обычной турбины тем, что имеет возможность регулировки как направления, так и величины потока отработавших газов. Данная особенность позволяет добиться наиболее подходящей частоты вращения турбины применительно к конкретному режиму работы ДВС. Производительность компрессора в этом случае сильно повышается.
Например, турбина VNT имеет в основе конструкции специальные направляющие лопатки. Дополнительно имеется механизм управления, а также отмечено наличие вакуумного привода. Указанные лопатки турбины производят поворот на необходимый угол вокруг свой оси, тем самым способны менять скорость и направление потока выхлопа. Это происходит благодаря изменению величины сечения канала.
Механизм управления отвечает за поворот лопаток. Конструктивно механизм имеет кольцо и рычаг. На рычаг оказывает воздействие вакуумный привод, который управляет работой механизма посредством специальной тяги. Вакуумный привод управляется отдельным клапаном, который ограничивает давление наддува. Клапан является составным элементом электронной системы управления ДВС и срабатывает зависимо от показателей величины давления наддува. Эта величина измеряется отдельными датчиками:
- температурный датчик, который измеряет температуру воздуха на впуске;
- датчик давления наддува;
Другими словами, турбонаддув на TDI работает так, чтобы давление наддувочного воздуха всегда было оптимальным на разных оборотах двигателя. Фактически, турбина дозирует энергию потока отработавших газов.
- Как известно, на низких оборотах двигателя скорость потока (энергия) выхлопа является достаточно низкой. В таком режиме направляющие лопатки обычно закрыты, чем достигается минимальное сечение в канале. В результате прохождения через такой канал даже небольшое количество газов более эффективно крутит турбину, заставляя компрессорное колесо вращаться заметно быстрее. Получается, турбокомпрессор обеспечивает большую производительность на низких оборотах.
- Если водитель резко нажимает на газ, тогда у обычной турбины возникает эффект так называемой «турбоямы». Под турбоямой следует понимать задержку отклика на нажатие педали газа, то есть не моментальный прирост мощности, а подхват после небольшой паузы. Такая особенность обусловлена инерционностью системы турбонаддува, в результате чего потока газов оказывается недостаточно в момент резкого увеличения оборотов коленвала. В турбинах с изменяемой геометрией направляющие лопатки осуществляют свой поворот с определенной задержкой, что позволяет поддерживать нужное давление наддува и практически избавиться от турбоямы.
- При езде на высоких и приближенных к максимальным оборотах двигателя отработавшие газы имеют максимум энергии. Чтобы предотвратить создание избыточного давления наддува лопатки в турбинах с изменяемой геометрией поворачиваются так, чтобы мощный поток газов двигался по широкому каналу с наибольшим поперечным сечением.
Относительно малый ресурс турбокомпрессора связан с тем, что на TDI ставятся исключительно турбины с изменяемой геометрией. Турбокомпрессор во время работы двигателя раскручивается до 200 тыс. об/мин и постоянно взаимодействует с потоком разогретых до 1000 градусов по Цельсию выхлопных газов. Такие температурные и механические нагрузки, а также индивидуальные особенности конструкции указанных турбин сравнительно быстро приводят к необходимости ремонта или замены турбокомпрессора.
Турбированный двигатель, плюсы и минусы
Сначала о преимуществах:
- Возможность с малого объема “выжать” большую мощность, зачастую это 100 л.с. на каждый литр объема.
- Крутящий момент уже с холостых оборотов дает уверенную тягу, но только в случае, если турбина маленькая, она раскручивается быстрее.
- Диапазон крутящего момента широкий.
- Расход топлива, при одинаковой мощности с атмосферным моторов, явно ниже.
- Возможность увеличивать мощность с помощью прошивки на 20-30% без вреда ресурсу и комфорту движения.
- Ресурс турбины современных авто едва достигает 100 тыс.км.
- Возникновение «турбоямы», процесса между провалом и резким набором скорости из-за ожидания раскрутки турбины.
- Стоимость ремонта дороже, обслуживать двигатель нужно чаще.
- Возрастает потребность в качественном масле и топливе.
Преимущества турбокомпрессора.
- Оснащенный турбокомпрессором двигатель имеет экономические и технические преимущества в сравнении с атмосферным (безнаддувным) давлением
- Двигатель с турбокомпрессором имеет более высокую массу и мощность чем атмосферный двигатель
- Двигатель с турбокомпрессором не такой огромный, как атмосферный, с той же мощностью
Кривая крутящего момента двигателя оснащенным турбокомпрессором, лучше адаптируется к специфическим условиям эксплуатации. Это, например, когда водитель огромного и тяжелого грузового автомобиля значительно реже переключает передачи на дороге горной местности, плюс само вождение будет более “мягким”. Также отметим, что на базе атмосферных двигателей можно производить версии, оснащенные турбокомпрессором, которые будут отличаться по мощности.
- Турбокомпрессор, укомплектованный в двигатель обеспечивает лучшее сгорание топлива. И это подтверждает уменьшение потребления топлива грузовиками на больших пробегах
- Улучшая сгорание, турбокомпрессор уменьшает выброс токсичности отработавших газов
- Двигатель с турбокомпрессором работает намного стабильнее своего атмосферного аналога такой же мощности, и издает меньше шума
- Турбокомпрессор для двигателя и всей системе сгорания выступает как определенный глушитель в системе выпуска
Ремонт турбокомпрессоров (ремонт турбин).
Современный турбокомпрессор – высокотехнологическое устройство, следовательно, и ремонт турбин представляет собой сложную задачу, которая требует у мастеров внимательности, аккуратности, технических навыков с использованием качественных материалов.
Если Вы заметили какие-либо неполадки на своей технике, связанные с турбинным оборудованием, то вам необходимо моментально проконсультироваться у специалиста, мастера, и предпринять соответствующие меры.
Здесь главная задача мастера – определить все причины, содействующие проблемам с турбиной. Быстро и эффективно разобраться в неполадках, и решить их, заказав ремонт турбины.
Что касается причин, которые содействуют выходу турбокомпрессора из строя, то их может быть много. Например, значительно высокая температура отработавших газов, большая частота вращения вала и другие.
Также повредить турбину можно обычными (естественными) причинами неисправностей, не задавая больших нагрузок на двигатель:
- Масляная недостаточность
- Загрязнение масла химическими элементами
- Загрязненный воздушный фильтр
- Перегрев турбокомпрессора
- Иные предметы, попавшие в улитку компрессора или механической турбины
Определяя и убирая все эти причины, и возможные другие, ремонт турбокомпрессоров и диагностика проходит следующим образом:
- Разбирается все оборудование, детали тщательно очищаются и моются от смазки
- Проводится дефектация, поиск трещин и признаков износа турбин
- Проводятся ремонтные токарно-слесарные работы
- Устанавливаются новые комплектующие на турбокомпрессор
- Балансируется ротор вала и турбина, затем собирается, и проводится диагностика на утечку масла
- По окончании, устанавливается улитка и чугунка
Проделывая весь вышеперечисленный комплекс мероприятий по ремонту турбокомпрессоров можно ремонтировать турбинное оборудование любой сложности: для легковых и грузовых автомобилей, автобусов, сельскохозяйственной, строительной техники и т.д. главное производить ремонт в заводских условиях .
Качественный ремонт турбин практически невозможен без качественного спецоборудования.
Балансировка – один из самых важных и основных моментов в ремонте турбокомпрессора, без проведения этой операции или проведения некачественной балансировки, ремонт можно считать недействительным.
Ремонт турбин для легковых и грузовых автомобилей, микроавтобусов, спецтехники необходимо производить опытными, квалифицированными специалистами в области гидрооборудования. К ремонту турбокомпрессора необходимо прилагать гарантийный талон, и обязательно инструкцию по установке и эксплуатации.
В конце отметим, что любой турбокомпрессор или механическая турбина нуждаются в определенном обслуживании. А именно, всегда нужно следить за смазкой всего оборудования. Потому, как недостаток масла обычно приводит к сильному износу, а то и выхода из строя запчастей.
Частые и основные признаки неисправности
– это черный или синеватый дым из выхлопной трубы, сокращенная мощность двигателя, увеличенный расход моторного масла или шум при работе турбокомпрессора.
На двигателе, который отлично работает, вовремя и качественно обслуживается, турбокомпрессор может безотказно работать в течение многих лет. Следовательно, не будет необходимости задумываться про ремонт турбокомпрессоров на своей технике на протяжении долгого времени.
Как работает
Стоит отметить, что принцип работы турбины на бензиновом двигателе такой же, как и на дизельном. Во время работы ДВС вырабатываются выхлопные газы. Они поступают в корпус (горячую часть улитки), где двигаются по лопаткам турбинного колеса. Последнее раскручивается до невероятных скоростей – 100 и более тысяч оборотов в минуту. Поскольку турбинное колесо жестко соединено с валом, крутящий момент передается на вторую холодную часть турбины. Та, в свою очередь, начинает захватывать кислород из атмосферы. Он проникает внутрь после того, как пройдет через фильтр. Далее воздух под давлением попадает во впускной коллектор, где смешивается с топливом и проникает в камеру сгорания. В качестве материалов для корпуса турбины используются жаропрочные марки стали и железоникелевый сплав.
Производительность компрессора зависит от ее формы и габаритных размеров. Чем больше ее диаметр, тем больше воздуха засасывается во впускной коллектор. Но нельзя постоянно увеличивать размеры компрессора. Это может привести к турбозадержке. Малая турбина раскручивается значительно быстрее до номинальной скорости. Но на пике имеет меньшую производительность. Поэтому размеры и форма элемента подбираются строго индивидуально для каждого ДВС. Нельзя установить агрегат от бензинового авто на дизельный, и наоборот. Хоть и имеет одинаковый принцип работы турбина, действовать она будет иначе на разных авто.
Важный момент: для регулирования давления наддува в конструкции предусмотрен специальный перепускной клапан. Он имеет пневматический привод, а управляется ЭБУ двигателя.
Устройство и принцип работы турбокомпрессора
Турбокомпрессор (турбина) — механизм, применяемый в автомобилях для принудительного нагнетания воздуха в цилиндры двигателя внутреннего сгорания. При этом привод турбины осуществляется исключительно за счет действия отработавших газов (выхлопа). Применение турбокомпрессора позволяет существенно увеличить мощность двигателя (примерно на 40%), сохраняя компактными его габаритные размеры и низкий уровень расхода топлива.
Конструкция и принцип работы турбины
Устройство турбокомпрессора
Классический турбокомпрессор состоит из следующих элементов:
- Корпус. Выполняется из жаропрочных материалов (стали). Он имеет форму улитки с двумя разнонаправленными патрубками, оснащенными фланцами для крепления в системе турбонаддува.
- Турбинное колесо. Преобразует энергию отработавших газов во вращение вала, на котором оно жестко зафиксировано. Изготавливается из жаропрочных материалов (железо-никелевый сплав).
- Компрессорное колесо. Воспринимает вращение от турбинного колеса и нагнетает воздух в цилиндры двигателя. Колесо компрессора зачастую изготавливают из алюминия, что снижает потери энергии. Температурный режим на этом участке близок к нормальным условиям, и применение жаропрочных материалов не требуется.
- Вал турбины (ось) — соединяет турбинное и компрессорное колеса.
- Подшипники скольжения, или шарикоподшипники. Необходимы для крепления вала в корпусе. В конструкции может быть предусмотрен один или два подшипника. Смазка последних осуществляется общей системой смазки двигателя.
- Перепускной клапан — предназначен для управления потоком отработавших газов, воздействующим на колесо турбины. Это позволяет управлять мощностью наддува. Клапан оснащен пневматическим приводом. Его положение регулируется ЭБУ двигателя, получающим соответствующий сигнал от датчика скорости.
Принцип работы турбокомпрессора
Основной принцип работы турбины на бензиновом и дизельном двигателях заключается в следующем:
- Отработавшие газы направляются в корпус турбокомпрессора, где воздействуют на лопатки турбинного колеса.
- Колесо турбины начинает вращаться и разгоняться. Скорость вращения турбины при высоких оборотах может достигать до 250 000 оборотов в минуту.
- Пройдя через колесо турбины, отработавшие газы отводятся в систему выпуска.
- Компрессорное колесо синхронно вращается (поскольку находится на одном валу с турбинным) и направляет поток сжатого воздуха в интеркулер и далее во впускной коллектор двигателя.
Особенности эксплуатации турбин
В сравнении с механическим нагнетателем, работающим от привода коленчатого вала, достоинствами турбины является то, что она не отнимает мощность у двигателя, а использует энергию побочных продуктов его работы. Она дешевле в изготовлении и экономичнее в эксплуатации.
Хотя технически устройство турбины дизельного двигателя практически не отличается от систем для бензиновых моторов, на дизеле она встречается чаще. Основная особенность заключается в режимах работы. Так для дизеля могут применяться менее жаропрочные материалы, поскольку температура отработавших газов в среднем составляет от 700 °С в дизельных двигателях и от 1000°С в бензиновых моторах. Это значит, что устанавливать дизельную турбину на бензиновый двигатель нельзя.
С другой стороны, для этих систем характерны и разные уровни давления наддува. При этом стоит учитывать, что производительность турбины зависит от ее геометрических размеров. Давление нагнетаемого в цилиндры воздуха складывается из двух частей: 1 атмосфера давления окружающей среды плюс избыточное, создаваемое турбокомпрессором. Оно может варьироваться от 0,4 до 2,2 и более атмосфер. Если учесть, что принцип работы турбины на дизельном двигателе предусматривает поступление большего объема выхлопных газов, конструкция для бензинового мотора также не может устанавливаться на дизелях.
Принцип работы турбинного двигателя на автомобиле
В зависимости от устройства и принципа действия ДВС бывают:
- атмосферными;
- турбированными.
Разница между ними заключается в том, что в систему турбонаддува входит компрессор, интеркулер, регулятор давления наддува и пр. Основным элементом является турбокомпрессор, который отвечает за повышение давления в системе впуска воздуха. Интеркулер необходим для охлаждения воздуха и увеличения его плотности.
Система находится под управлением регулятора наддува – перепускного клапана, который контролирует давление газов. Ограничивая их количество, клапан создает оптимальное давление в системе.
Турбокомпрессор функционирует следующим образом:
- Пройдя сквозь воздушный фильтр, воздух достигает входного отверстия.
- Воздух сжимается, процент содержания в нем кислорода повышается; за счет нагрева воздуха уменьшается его плотность.
- Воздушная масса выходит из турбинного компрессора, попадает в интеркулер, где охлаждается.
- Через дроссель и впускной коллектор сжатый воздух попадает в цилиндры двигателя.
- Часть образовавшихся при работе двигателя выхлопных газов подается турбиной обратно в коллектор турбины; за счет этого воздушного потока приводится в движение вал, на одном из концов которого находится компрессор.
- После этого воздух начинает повторно сжиматься.
Бензиновые и дизельные турбинные двигатели на автомобилях практически идентичны, разница заключается только в уровне наддува. Для дизельных ДВС необходимо большее давление, в связи с этим они комплектуются более мощными нагнетателями воздуха. Бензиновым двигателям достаточно нагнетателей меньшей мощности, поскольку излишнее давление в камере сгорания может привести к детонации.
-
Бензиновый турбинный двигатель на автомобиле представляет собой ДВС с искусственно увеличенным благодаря турбине уровнем сжатия воздуха в камерах. За счет повышения этого параметра увеличивается мощность мотора и ряд других характеристик.
Создав самый первый силовой агрегат, инженеры начали попытки увеличения его мощности без значительного изменения объема мотора. Казалось бы, решить эту задачу очень просто, позволив ДВС более эффективно «дышать». Дополнительный объем воздуха, поступающий в цилиндры принудительно, под давлением, способен улучшить параметры сгорания топливовоздушной смеси.
За счет большего объема воздуха топливо может прогорать полностью, тем самым повышая мощность. Однако внедрение новых технологий происходило медленно. Изначально турбокомпрессоры устанавливались только на большие двигатели кораблей и авиации.
- Турбодизельные агрегаты имеют практически аналогичное строение. Разница между бензиновым и дизельным турбинным двигателем на автомобиле заключается в наличии интеркулера – узла, охлаждающего воздух перед его поступлением в цилиндры. Так как холодный воздух имеет меньший объем по сравнению с теплым, он может поступить в цилиндры в большем количестве.
Автомобильные турбины: Функции и как увеличить срок службы
Автомобильные турбокомпрессоры являются ключевым компонентом для увеличения мощности любого автомобиля. В последние годы все больше новых автомобилей стали оснащаться турбинами. Благодаря турбокомпрессорам автопроизводители не только повышают мощность автомобилям, но и делает их выхлоп экологически чище. К сожалению, помимо плюсов, есть и минусы при использовании автомобильных турбин. Главный минус- это ресурс турбокомпрессора. К счастью, существуют некоторые рекомендации, которые позволяют увеличить срок службы компонентов турбонаддува. Предлагаем вам узнать, как работают турбокомпрессоры в современных автомобилях, а также узнать, как вы можете предотвратить преждевременный выход турбины из строя.
Приобретая в наши дни новый автомобиль, скорее всего, он будет оснащен турбированным двигателем, благодаря чему транспортное средство имеет неплохую мощность, низкий расход топлива и более чистый выхлоп. Давайте подробнее узнаем, что же такое турбокомпрессор, а также узнаем самые важные факты о нем. В том числе, мы расскажем о самых частых дефектах и поломках автомобильных турбин.
На сегодняшнем рынке пока не все автомобили оснащаются турбинами. Но уже через несколько лет купить машину без турбированного мотора у вас вряд ли получится. Причем это касается не только бензиновых моделей автомобилей. Дело в том, что турбиной оснащаются, в том числе, и дизельные двигатели.
Так что турбокомпрессоры в наши дни стали неотъемлемой частью большинства современных автомобилей. Но, несмотря на то, что турбированные двигатели стали очень популярны несколько лет назад, технология двигателей, оснащенных турбокомпрессорами, появилась уже более 100 лет назад.
В 1905 году Швейцарский изобретатель Альфред Бучи изобрел систему нагнетания, которая работала от выхлопных газов в двигателе внутреннего сгорания. Смысл этого изобретения прост и основан на принципе работы лопастей ветряной мельницы, которые вращаются потоком ветра. Только вместо ветра в изобретении Альфреда использовался выхлоп отработанных газов силового агрегата, который и вращал лопасти.
К сожалению, в те годы Альфреду удалось получить только патент на изобретение. Увы, построить партию опытных образцов у изобретателя не было возможности.
В 1913 Французский профессор Огюст Рато впервые в мире оснастил самолет турбокомпрессором, основанным на изобретении Бучи.
В 1915 году Альфред Бучи построил прототип корабля, оснащенного дизельным двигателем с турбиной.
Позднее, турбокомпрессоры пришли в мир автоспорта, где перевернули представление о мощности автомобилей.
Недавно автопроизводители вспомнили о технологиях турбированных моторов, которые намного эффективнее обычных двигателей. В первую очередь автомобильные компании стали оснащать турбокомпрессорами дизельные маломощные двигатели. В итоге, благодаря турбонаддуву многие современные дизельные моторы по мощности приблизились к бензиновым силовым агрегатам.
Это интересно: Как начать самостоятельно обслуживать автомобиль?
В итоге сегодня турбомоторы стали незаменимыми для автопроизводителей, которые вынуждены подстраиваться под новые экологические нормы, которые действуют в США и Европе. Благодаря использованию турбокомпрессоров, современные автомобили стали намного экономичнее, мощнее, а также имеют низкий уровень вредных веществ в выхлопе.
В конечном итоге все современные автомобили в наши дни, выпускаемые в автопромышленности, являются самыми экологическими чистыми за всю историю автомира.