Пусковой ток

Практическое применение

Силовые приводы будут эксплуатироваться правильно только в том случае, если при их выборе были учтены пусковые характеристики.

Ток пуска может повредить не только сам мотор, но и другое электрооборудование, установленное с ним на одной линии. Для решения поставленной задачи можно использовать следующие методы:

  • Производить запуск силового агрегата на холостом ходу – нагрузка прикладывается только после перехода мотора в рабочий режим.
  • При подключении использовать схему треугольник-звезда.
  • Применять автотрансформаторный пуск – напряжение на двигатель подается через автотрансформатор, что позволяет добиться плавного повышения силы тока.
  • Использовать пусковые резисторы.
  • Применение частотных регуляторов и тиристорных устройств плавного запуска.

С помощью устройств плавного пуска, основанных на тиристорах, можно снизить показатель электротока пуска в два раза. При этом они могут работать как с асинхронными, так и синхронными электромоторами. В случае с трехфазными асинхронными двигателями, широкое распространение получили преобразователи частоты. Они позволяют изменять частоту электротока, обеспечивая не только плавный старт мотора, но и частоту вращения его ротора. Это эффективные устройства, но с высокой стоимостью. Следует помнить, что частотные преобразователи создают в сети помехи, устранить которые поможет сетевой фильтр.

Также можно использовать схему пуска силового агрегата с переключением обмоток со звезды на треугольник.

Например, этот метод не применяется при подключении асинхронных электромоторов, рассчитанных на напряжение 220-380 В.

Сейчас на рынке появились более современные устройства – софт-стартеры. Они основаны на микропроцессорах и весьма эффективны. Единственным недостатком этих устройств может считаться лишь высокая стоимость.

Красников Николай

Источник

Как узнать мощность мотор-колеса

Чтобы выполнить приблизительный расчет мощности мотор-колеса, нужно:

  1. Измерить ток при помощи последовательно включаемых в цепь амперметров. В данном случае амперметр подсоединяется в разрыв цепи между аккумуляторной батареей и контроллером.
  2. Измерить напряжение АКБ. Вольтметр подсоединяется параллельно исследуемому участку цепи.
  3. Вычислить произведение измеренных значений тока и напряжения, т.е. потребляемую мощность.
  4. Умножить полученное значение на КПД электромотора – получим величину мощности на валу МК. КПД электромотора указывается производителем в документации и в среднем составляет 80–90% (при умножении – коэффициент 0,8–0,9).

Силу тока и напряжение нужно замерять под нагрузкой. При отсутствии динамометрического стенда следует подыскать ему альтернативу. Для определения скорости подойдет велокомпьютер. Его показания основываются на расчете оборотов колеса и достаточно точны, если в настройках указан верный диаметр.

Затем нужно создать нагрузку для электромотора. Сделать это можно несколькими способами:

  1. Измерить время разгона до предельной скорости на ровном и сухом участке асфальтированной дороги. При помощи предыдущей формулы (P=IU) рассчитать мощность, развиваемую электромотором при максимальном разгоне.
  2. Преодолеть на электровелосипеде или другом испытуемом транспорте участок с равномерным подъемом. Запомнить значения амперметра и вольтметра. Для расчетов мощности, развиваемой при таком подъеме, используется формула P=IU·КПД (в среднем берется 0,8). На подъемах разной крутизны можно приблизительно рассчитать мощность конкретного электротранспорта, развиваемую им в различных условиях. Номинальной считается наибольшая мощность, развиваемая электромотором без вреда для его исправности.
  3. Определить высоту подъема (можно воспользоваться GPS навигатором) и выполнить заезды на него. Рассчитать мощность по формуле P=mgh/t, где m – суммарная масса транспортного средства и ездока в кг, g =9,81, h – высота подъема, t – время заезда, P – мощность в Вт.

Iн = Pн/(√3Uн х сosφ), кА

где Pн — номинальная мощность двигателя, кВт, Uн — напряжение в сети, кВ (0,38 кВ). Коэффициент мощности (сosφ) — паспортные значения двигателя.

Рис. 1. Паспорт электрического двигателя.

Если не известен коэффициент мощности двигателя, то номинальный его ток с малой погрешностью определяется по отношению «два ампера на киловатт», т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им из сети ток будет приблизительно равен 20 А.

Для упомянутого на рисунке двигателя это отношение также выполняется (3,4 А ≈ 2 х 1,5). Более верные величины тока при применении данного отношения получаются при мощностях электродвигателей от 3 кВт.

При холостом ходе электродвигателя из сети потребляется маленький ток (ток холостого хода). При увеличении нагрузки увеличивается и ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к перегреву обмоток двигателя, и возникает опасность выхода из строя электродвигателя.

При пуске из сети электрическим двигателем потребляется пусковой ток Iпуск, который в 3 — 8 раз выше номинального. Характеристика изменения тока представлена на графике (рис. 2, а).

Рис. 2. Характеристика изменения тока, потребляемого электродвигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)

Подлинную величину пускового тока для электродвигателя определяют зная величину кратности пускового тока — Iпуск/Iном. Кратность пускового тока — техническая характеристика двигателя, ее известна из каталогов. Пусковой ток рассчитывается согласно формуле: I пуск = Iх. х (Iпуск/Iном).

Понимание истинной величины пускового тока необходимо для подбора плавких предохранителей, проверки включения электромагнитных расцепителей во время пуска двигателя, при подборе автоматических выключателей и для высчитывания величины падения напряжения в сети при пуске.

Большой пусковой ток вызывает значительное падение напряжения в сети (рис. 2, б).

Если взять электросопротивление проводов, проложенных от источника до электродвигателя, равным 0,5 Ом, номинальный ток Iн=15 А, а пусковой ток Iп равным пятикратному от номинального, потери напряжения в проводах во время пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.

На клеммах электродвигателя, а также и на клеммах рядом работающих электродвигателей напряжение будет 220 — 75 = 145 В. Это понижение напряжения вызывает торможение работающих электродвигателей, что влечет за собой еще большее повышение тока в сети и выход из строя предохранителей.

В электрических лампах в моменты запуска электродвигателей уменьшается накал (лампы «мигают»). Поэтому при включении электродвигателей стремятся уменьшить пусковые токи.

Для понижения пускового тока используется схема пуска электродвигателя с переключением обмоток статора со звезды на треугольник.

Рис. 3. Схема пуска электрического электродвигателя с переключением обмоток статора со звезды на треугольник.

Имеет принципиальное значение то, что далеко не каждый двигатель возможно включать по этой схеме. Широко распространенные асинхронные двигатели с рабочим напряжением 220/380 В, в том числе и двигатель, показанный на рисунке 1 при включении по этой схеме выйдут из строя.

Для понижения пускового тока электродвигателей энергично употребляют специальные процессорные устройства плавного пуска (софт-стартеры).

Источник

Определение количества оборотов в минуту

Частота вращения асинхронного двигателя, зависит от количества обмоток статора. Разобрав мотор можно визуально определить их число. Для определения числа оборотов используйте таблицу:

Количество полюсов Частота вращения, об/мин
2 3000
4 1500
6 1000
8 750
10 600
12 500

Определить число полюсов, не разбирая электромотор, можно с помощью миллиамперметра, или тестера с соответствующим режимом. Для этого подключаем измерительный прибор к одной из обмоток. Равномерно вращая вал, смотрим, сколько раз стрелка миллиамперметра отклонится. Это число, и есть количество полюсов двигателя.

При таком способе определения частоты вращения вала, надо учитывать, что реальная частота несколько ниже вычисленной. Например, не 3000, а 2940, или не 1500, а 1450.

Применение описанных выше методик, позволит подобрать электромотор, удовлетворяющий предъявляемым требованиям, но, все же, надо следить за сохранностью шильдиков и паспортов, чтобы не тратить время на расчеты и поиск информации.

  • Альтернативное электричество для частного дома
  • Заземление и зануление: в чем разница?

Расчет тока электродвигателя

Расчет номинального и пускового тока электродвигателя по мощности можно произвести с помощью нашего онлайн калькулятора:

Расчет номинального тока двигателя производится по следующей формуле:

Iном=P/√3Ucosφη

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

Расчет пускового тока электродвигателя производится по формуле:

Iпуск=Iном*K

К — Кратность пускового тока, данная величина берется из паспорта электродвигателя, либо из каталожных данных (в приведенном выше онлайн калькуляторе кратность пускового тока определяется приблизительно исходя из прочих указанных характеристик электродвигателя).

Показатели точности стабилизации, необходимые для защиты устройств

Как определить точность стабилизации? Путем вычисления такого диапазона напряжений, который является приемлемым для устройств, подключаемых к стабилизатору. Для того чтобы получить необходимые данные, вам придется заглянуть в инструкцию по эксплуатации либо обратиться в сервисный центр, представляющий производителя.

В целом, основная масса бытовых приборов питается напряжением в 220В (± 5-7%).

Однако, стоит учитывать, что приборы могут иметь различные требования к питанию и диапазону напряжений. Кроме того, эти показатели варьируются у разных производителей. По этой причине сложно составить универсальную таблицу параметров электропитания. В каждом конкретном случае следует руководствоваться индивидуальной информацией от производителя.

Для осветительной аппаратуры, как правило, используются стабилизаторы напряжения с показателями точности не менее ±3%, а также плавным (в противовес ступенчатому) регулятором напряжения. Высокая точность стабилизации гарантирует низкий разброс напряжения на выходе. Это в свою очередь оказывает влияние на обеспечение условий для максимально долгого срока службы ламп, а также стабильный уровень интенсивности света при скачках напряжения в сети.

Как посчитать пусковой ток электродвигателя

Разобраться, как посчитать пусковой ток электродвигателя, можно самостоятельно, ознакомившись с технической документацией к агрегату и формулами для расчета. Сначала вам потребуется определить величину номинального тока (IH, зависит от типа двигателя). Для этого предусмотрены следующие формулы (все необходимые данные есть в техпаспорте к оборудованию):

  • 1000PH/(ηHUH) для двигателей постоянного тока;
  • 1000PH/(UHcosφH√ηH) для устройств переменного тока.

Далее проводится собственно расчет значения пускового тока (IП) по формуле Кп (кратность постоянного тока к номинальному показателю, указана в техдокументации)*IH.

Дополнительный функционал стабилизаторов напряжения

Для начала, резюмируем основные функции, выполняемые стабилизаторами:

  • в пределах допустимого диапазона контролируют уровень напряжения, подаваемого рабочему устройству;
  • при превышении или понижении уровня входного напряжения производят отключение питания нагрузки и, следовательно, предотвращают поломку прибора;
  • защищают от воздействия чрезмерного уровня мощности и возможного короткого замыкания.

Теперь перейдем к дополнительным возможностям, предоставляемым стабилизаторами напряжения. Их можно условно объединить в следующие группы:

Возможность индивидуальной настройки стабилизатора

  • установка номинального напряжения на выходе более или менее 220В;
  • индивидуальная настройка порогов защиты – как от повышенного, так и пониженного напряжения на выходе.

Удобство для пользователя

  • устройства индикации работы (ЖК-дисплей, цифровой индикатор показателей);
  • звуковая подача отдельной информации;
  • возможность отслеживания работы стабилизатора с ПК;
  • удаленная система наблюдения за работой стабилизатора и сигнализация.

Повышенная защищенность стабилизатора

  • контроль температуры силовых узлов;
  • функции самодиагностики.

Если после ознакомления с материалами статьи у вас остались вопросы, вы не смоги произвести какие-либо расчеты или получить необходимую информацию (из инструкции, паспорта или от производителя), рекомендуем вам связаться с нашим специалистом, который разъяснит все сопутствующие тонкости выбора стабилизатора.

Таблица 1.

Номинальная потребляемая мощность бытовых приборов и инструмента.

Таблица 2.

Пусковые токи потребителей электроэнергии.

Материал в таблице подготовлен на основе показателей, характерных для нагрузочных характеристик «средних» потребителей. Для получения более точной информации в каждом конкретном случае стоит обращаться к информации, представленной в паспорте, либо запрашивать информацию у производителя. Значения нагрузочных характеристик оборудования различных моделей могут существенно отличаться от «средних» данных.

Исходя из вышеизложенного был создан калькулятор рассчета мощности потребляемой электроэнергии. Он учитывает полную мощность потребителей (усредненное значение для каждого типа приборов, которое вы сможете указать точно) и корректирующий коэффициент связаный с падением входного напряжения электросети поставщика. Разница будет существенной при значительном падении входного напряжения (ниже 170В)

Климатические исполнения электродвигателей

При выборе электродвигателя учитываются не только его технические характеристики, но и условия окружающей среды, в которых он будет эксплуатироваться.

Современные электроприводы выпускаются в разных климатических исполнениях. Категории маркируются соответствующими буквами и цифрами:

  • У — модели для эксплуатации в умеренном климате;
  • ХЛ — электродвигатели, адаптированные к холодному климату;
  • ТС — исполнения для сухого тропического климата;
  • ТВ — исполнения для влажного тропического климата;
  • Т — универсальные исполнения для тропического климата;
  • О — электродвигатели для эксплуатации на суше;
  • М — двигатели для работы в морском климате (холодном и умеренном);
  • В — модели, которые могут использоваться в любых зонах на суше и на море.

Цифры в номенклатуре модели указывают на тип ее размещения:

  • 1 — возможность эксплуатации на открытых площадках;
  • 2 — установка в помещениях со свободным доступом воздуха;
  • 3 — эксплуатация в закрытых цехах и помещениях;
  • 4 — использование в производственных и других помещениях с возможностью регулирования климатических условий (наличие вентиляции, отопления);
  • 5 — исполнения, разработанные для эксплуатации в зонах повышенной влажности, с высоким образованием конденсата.

Мощность электродвигателя по установочным и габаритным размерам

Для первого способа необходимо знать установочные размеры электродвигателя и синхронную частоту вращения. Последняя измеряется с помощью мультиметра, установленного в режим миллиамперметра. Для этого указатель колеса выбора устанавливаем на значение 100µA. Щуп черного цвета подключаем в общее гнездо «COM», а щуп красного цвета — к гнезду для измерения напряжения, сопротивления и силы тока до 10 А.

После этого обесточиваем электродвигатель и снимаем крышку с клеммной коробки. Щупы мультиметра подключаем к началу и концу любой из обмоток (например, V1 и V2). После этого рукой медленно проворачиваем вал двигателя так, чтобы он совершил один оборот, и считаем количество отклонений стрелки из состояния покоя, которые она сделает за это время. Число отклонений стрелки за один оборот вала равно количеству полюсов и соответствует такой синхронной частоте вращения: • 2 полюса – 3000 об/мин; • 4 полюса – 1500 об/мин; • 6 полюсов – 1000 об/мин; • 8 полюсов – 750 об/мин. Теперь необходимо выяснить установочные размеры двигателя. Для замеров используем штангенциркуль, механический или электронный, а также измерительную рулетку. Записываем результаты измерений в миллиметрах: диаметр и длину вылета вала, высоту оси вращения, расстояние между центрами отверстий в «лапах», а если двигатель фланцевый, то диаметр фланца и диаметр крепежных отверстий. Полученные данные сравниваем с параметрами из таблиц 1-3.

О наболевшем — Или расчет силы тока трехфазных асинхронных двигателей на 380В

Кстати при установке новых двигателей ничего и считать не надо, как правило номинальный ток для обоих режимов (звезда 380 и треугольник 220) указан на шильдике, вместе со всеми остальными параметрами.

Так какже, правильно расчитать, грубо или поточнее мощность асинхронного двигателя в стандартной ситуации? Для начала определимся с это самой «стандартной ситуацией» и с чем ее едят. Стандартной я называю ситуацию, когда двигатель расчитанный на 380\220 звезда\треугольник, подключается на стандартные 380 звездой, на все три фазы. В промышленности это встречается наиболее часто, и также часто вызывает вопросы по поводу того, какого номинала автоматы ставить, ибо многие, знают стандартную формулу мощности I=P\U и почемуто, видимо от большой грамотности или большого ума, от которого горе по Грибоедову, начинают для трехфазной нагрузки применять ее.

А теперь раскрываю секрет, страааашный секрет. Для расчета защиты маломощных двигателей на 380В, мощностью до 30 квт вполне достаточно умножить мощность ровно на 2, то есть P*2=

In , автомат все равно выбирается ближайший по номиналу в большую сторону, то есть 63А для 30 квт двигателя, имеющего на валу нагрузкой ну скажем турбину вентилятора типа Циклон. Это страаашный, нигде в учебниках не озвученный секретный экспресс-метод грубого расчета силы тока двигателей на 380В. Почему так? Очень просто при U=380В на один КВТ мощности приходится примерно сила тока в 2 Ампера. (Да меня щас побьют теоретики, которые помнят про КПД и Косинус ФИ. Помолчите Господа, пока помолчите, я же сказал, для МАЛОМОЩНЫХ двигателей до 30 квт, а для низких мощностей, зная модельный ряд наших автоматов, эти 2 значения можно и не учитывать, особенно если нагрузка на вал минимальная)

А теперь представим типовой двигатель* со следующими параметрами: P=30 квт U=380 В сила тока на шильдике стерлась. cos φ = 0,85 КПД=0,9

Как найти его силу тока? Если считать так, как советуют и сами считают упрямые «очень умные» горе-инженера, особенно любящие озадачивать этим вопросом на собеседованиях, то получаем цифру в 78,9А, после чего горе-инженера начинают лихорадочно вспоминать про пусковые токи, задумчиво хмурить брови и морщить лбы, а затем не стесняясь требуют поставить автомат минимум на 100А, так как ближайший по номиналу 80А будет выбивать при малейшей попытке запуска офигенными пусковыми токами. И переспорить их очень тяжело, так как все нижеследующее вызывает у умных дяденек бурю эмоций, недержание мочи и кала, разрыв шаблона, и погружение в глубокий транс с причитаниями и маханием корочками тех универов где они учились считать и жить..

Определение по габаритам

Еще один способ — проведение замеров и вычислений. Многие из тех, кто интересуется, как узнать мощность трехфазного двигателя, предпочитают именно его. Вам понадобятся следующие данные:

Диаметр сердечника в сантиметрах (D). Он измеряется по внутренней части статора. Также необходима длина сердечника с учетом отверстий вентиляции.

Частота валового вращения (n) и частота сети (f).

Через них вычислите показатель полюсного деления. D умножьте на n и на число Пи — назовем это показание А. 120 умножьте на f — это В. Разделите А на В.

Как видите, чтобы подсчитать значение, достаточно вспомнить школьный курс математики.

Кратность — пусковой момент

Кратность пускового момента выбирается из каталога на двигатели. За расчетное значение Ммакс принимается максимальная величина момента только в тех положениях переключающего устройства, в которых оно может остановиться.

Кратностью пускового момента называют отношение Кп — м Мп / Мном. Для асинхронных двигателей мощностью 0 6 — 100 кВт ГОСТом установлен Кп. Достоинством прямого пуска является простота, а отсюда — высокая надежность.

Получение кратностей пускового момента , больших регламентированных ГОСТом, обычно нежелательно, так как это связано либо с увеличением активного сопротивления ротора ( см. 4.58), либо с изменением конструкции ротора ( см. § 4.11), что ухудшает энергетические показатели двигателя.

Iн = Pн/(√3Uн х сosφ), кА

где Pн — номинальная мощность двигателя, кВт, Uн — напряжение в сети, кВ (0,38 кВ). Коэффициент мощности (сosφ) — паспортные значения двигателя.

Рис. 1. Паспорт электрического двигателя.

Если не известен коэффициент мощности двигателя, то номинальный его ток с малой погрешностью определяется по отношению «два ампера на киловатт», т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им из сети ток будет приблизительно равен 20 А.

Для упомянутого на рисунке двигателя это отношение также выполняется (3,4 А ≈ 2 х 1,5). Более верные величины тока при применении данного отношения получаются при мощностях электродвигателей от 3 кВт.

При холостом ходе электродвигателя из сети потребляется маленький ток (ток холостого хода). При увеличении нагрузки увеличивается и ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к перегреву обмоток двигателя, и возникает опасность выхода из строя электродвигателя.

При пуске из сети электрическим двигателем потребляется пусковой ток Iпуск, который в 3 — 8 раз выше номинального. Характеристика изменения тока представлена на графике (рис. 2, а).

Рис. 2. Характеристика изменения тока, потребляемого электродвигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)

Подлинную величину пускового тока для электродвигателя определяют зная величину кратности пускового тока — Iпуск/Iном. Кратность пускового тока — техническая характеристика двигателя, ее известна из каталогов. Пусковой ток рассчитывается согласно формуле: I пуск = Iх. х (Iпуск/Iном).

Понимание истинной величины пускового тока необходимо для подбора плавких предохранителей, проверки включения электромагнитных расцепителей во время пуска двигателя, при подборе автоматических выключателей и для высчитывания величины падения напряжения в сети при пуске.

Большой пусковой ток вызывает значительное падение напряжения в сети (рис. 2, б).

Если взять электросопротивление проводов, проложенных от источника до электродвигателя, равным 0,5 Ом, номинальный ток Iн=15 А, а пусковой ток Iп равным пятикратному от номинального, потери напряжения в проводах во время пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.

На клеммах электродвигателя, а также и на клеммах рядом работающих электродвигателей напряжение будет 220 — 75 = 145 В. Это понижение напряжения вызывает торможение работающих электродвигателей, что влечет за собой еще большее повышение тока в сети и выход из строя предохранителей.

В электрических лампах в моменты запуска электродвигателей уменьшается накал (лампы «мигают»). Поэтому при включении электродвигателей стремятся уменьшить пусковые токи.

Для понижения пускового тока используется схема пуска электродвигателя с переключением обмоток статора со звезды на треугольник.

Рис. 3. Схема пуска электрического электродвигателя с переключением обмоток статора со звезды на треугольник.

Имеет принципиальное значение то, что далеко не каждый двигатель возможно включать по этой схеме. Широко распространенные асинхронные двигатели с рабочим напряжением 220/380 В, в том числе и двигатель, показанный на рисунке 1 при включении по этой схеме выйдут из строя.

Для понижения пускового тока электродвигателей энергично употребляют специальные процессорные устройства плавного пуска (софт-стартеры).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector