Устройство генератора переменного тока

Ждущий мультивибратор (одновибратор)

Ждущий мультивибратор в отличие от автоколебательного на выходе формирует одиночный импульс под действием входного сигнала, причём длительность выходного импульса зависит от номиналов элементов обвязки операционного усилителя. Схема ждущего мультивибратора показана ниже



Схема ждущего мультивибратора (одновибратора) на операционном усилителе.

Ждущий мультивибратор состоит из операционного усилителя DA1, цепи ПОС на резисторах R4R5, цепи ООС VD1C2R3 и цепи запуска C1R1VD2.

Цикл работы ждущего мультивибратора можно условно разделить на три части: ждущий режим, переход из ждущего режима в состояние выдержки и непосредственно состояние выдержки. Рассмотрим цикл работы мультивибратора подробнее.

Ждущий режим является основной и наиболее устойчивой частью цикла работы данного типа мультивибратора, так как самопроизвольно он не может перейти в следующие части цикла работы ждущего мультивибратора. В данном состоянии на выходе мультивибратора присутствует положительное напряжение насыщения ОУ (UНАС+), которое через цепь ПОС R4R5 частично поступает на неинвертирующий вход ОУ, тем самым задавая пороговое напряжение переключения мультивибратора (UПП), которое определяется следующим выражением

На инвертирующем входе ОУ присутствует напряжение, которое задаётся диодом VD1 (в случае кремневого диода напряжение примерно равно 0,6 – 0,7 В), то есть меньше порога переключения мультивибратора. При данных условиях ждущий мультивибратор может находиться неограниченно долгое время (до тех пор, пока не поступит запускающий импульс).

Переход из ждущего режима в состояние выдержки, является следующей частью цикла работы ждущего мультивибратора и начинается после того, как на вход поступит импульс отрицательной полярности, амплитуда которого превысит двухкратное значение напряжения переключения ждущего мультивибратора. То есть минимальная амплитуда входного напряжения (UВХ min) должна быть равна


В этом случае напряжение порога переключения ждущего мультивибратора понизится и станет меньше, чем напряжение падения на диоде VD1. Далее произойдёт лавинообразный процесс переключения выходного напряжения и на выходе установится напряжение отрицательного насыщение ОУ (UНАС-) и ждущий мультивибратор перейдёт в состояние выдержки. При выборе номиналов элементов входной цепи C1 и R1 надо исходить из того, что конденсатор С1 должен полностью разрядиться за время действия входного импульса, то есть постоянная времени цепи C1R1 должна быть на порядок (в десять раз) меньше длительности входного импульса.

Заключительная часть цикла работы ждущего мультивибратора является состояние выдержки. В данном состоянии на неинвертирующий вход поступает часть напряжения с выхода мультивибратора, тем самым задавая пороговое напряжение перехода мультивибратора в ждущий режим. В тоже время выходное напряжение через цепь ООС C1R1 поступает на инвертирующий вход и открывает диод VD1, через который начинает разряжаться конденсатор С1. После разряда конденсатора С1 до 0 В происходит его зарядка через резистор R1 до напряжения перехода мультивибратора в ждущий режим. После чего схема переходит в исходное состояние и на выходе устанавливается напряжение положительного насыщения ОУ (UНАС+). Длительность состояния выдержки и непосредственно формируемого выходного импульса определяется временем зарядка конденсатора С1 через резистор R1 и в общем случае определяется следующим выражением


Так как ждущий мультивибратор имеет только одно устойчивое состояние, то за ним закрепилось название одновибратора.

Для того чтобы одновибратор вырабатывал положительные импульсы при положительных управляющих входных сигналах необходимо изменить полярность включения диодов VD1 и VD2.

Принцип работы автомобильного генератора, особенности схемы

Принцип действия генераторного узла построен на эффекте электромагнитной индукции.

В случае прохождения магнитного потока через катушку и его изменения, на выводах появляется и меняется напряжение (в зависимости от скорости изменения потока). Аналогичным образом работает и обратный процесс.

Так, для получения магнитного потока требуется подать на катушку напряжение.

Выходит, что для создания переменного напряжения требуются две составляющие:

  • Катушка (именно с нее снимается напряжение).
  • Источник магнитного поля.

Не менее важным элементом, как отмечалось выше, является ротор, выступающий в роли источника магнитного поля.

У полюсной системы узла присутствует остаточный магнитный поток (даже при отсутствии тока в обмотке).

Этот параметр небольшой, поэтому способен вызвать самовозбуждение только на повышенных оборотах. По этой причине по обмотке ротора пропускают сначала небольшой ток, обеспечивающий намагничивание устройства.

Упомянутая выше цепочка подразумевает прохождение тока от АКБ через лампочку контроля.

Главный параметр здесь — сила тока, которая быть в пределах нормы. Если ток будет завышенным, аккумулятор быстро разрядится, а если заниженным — возрастет риск возбуждения генератора на ХХ мотора (холостых оборотах).

С учетом этих параметров подбирается и мощность лампочки, которая должна составлять 2-3 Вт.

Как только напряжение достигает требуемого параметра, лампочка гаснет, а обмотки возбуждения питаются от самого автомобильного генератора. При этом источник питания переходит в режим самовозбуждения.

Снятие напряжения производится со статорной обмотки, которая выполнена в трехфазном исполнении.

Узел состоит 3-х индивидуальных (фазных) обмоток, намотанных по определенному принципу на магнитопроводе.

Токи и напряжения в обмотках смещены между собой на 120 градусов. При этом сами обмотки могут собираться в двух вариантах — «звездой» или «треугольником».

Если выбрана схема «треугольник», фазные токи в 3-х отмотках будут в 1,73 раза меньше, чем общий ток, отдаваемый генераторной установкой.

Вот почему в автомобильных генераторах большой мощности чаще всего применяется схема «треугольника».

Это как раз объясняется меньшими токами, благодаря которым удается намотать обмотку проводом меньшего сечения.

Такой же провод можно использовать и в соединениях типа «звезда».

Чтобы созданный магнитный поток шел по назначению, и направлялся к статорной обмотке, катушки находятся в специальных пазах магнитопровода.

Из-за появления магнитного поля в обмотках и в статорном магнитопроводе, появляются вихревые токи.

Действие последних приводит к нагреву статора и снижению мощности генератора. Для уменьшения этого эффекта при изготовлении магнитопровода применяются стальные пластины.

Выработанное напряжение поступает в бортовую сеть через группу диодов (выпрямительный мост), о котором упоминалось выше.

После открытия диоды не создают сопротивления, и дают току беспрепятственно проходить в бортовую сеть.

Но при обратном напряжении I не пропускается. Фактически, остается только положительная полуволна.

Некоторые производители автомобилей для защиты электроники меняют диоды на стабилитроны.

Главной особенностью деталей является способность не пропускать ток до определенного параметра напряжения (25-30 Вольт).

После прохождения этого предела стабилитрон «пробивается» и пропускает обратный ток. При этом напряжение на «плюсовом» проводе генератора остается неизменным, что не несет риски для устройства.

К слову, способность стабилитрона поддерживать на выводах постоянное U даже после «пробоя» применяется в регуляторах.

В результате после прохождения диодного моста (стабилитронов) напряжение выпрямляется, становится постоянным.

У многих типов генераторных установок обмотка возбуждения имеет свой выпрямитель, собранный из 3-х диодов.

Благодаря такому подключению, протекание тока разряда от АКБ исключено.

Диоды, относящиеся к обмотке возбуждения, работают по аналогичному принципу и питают обмотку постоянным напряжением.

Здесь выпрямительное устройство состоит из шести диодов, три их которых являются отрицательными.

В процессе работы генератора ток возбуждения ниже параметра, который отдает автомобильный генератор.

Следовательно, для выпрямления тока на обмотке возбуждения достаточно диодов с номинальным током до двух Ампер.

Для сравнения силовые выпрямители имеют номинальный ток до 20-25 Ампер. Если требуется увеличить мощность генератора, ставится еще одно плечо с диодами.

Разновидности генераторов электроэнергии

Обычно самодельный генератор в домашних условиях изготавливают на основе асинхронного двигателя, магнитным, паровым, на дровах.

Вариант #1 — асинхронный генератор

Устройство сможет вырабатывать напряжение 220-380 В, исходя из показателей выбранного мотора.

Для сборки такого генератора потребуется лишь запустить асинхронный двигатель, подключив конденсаторы к обмоткам.

Генератор на основе асинхронного двигателя самостоятельно синхронизируется, запускает роторные обмотки с постоянным магнитным полем.

Двигатель оборудован ротором с трехфазной или однофазной обмоткой, вводом кабеля, короткозамыкательными устройством, щетками, регулирующим датчиком

Если ротор короткозамкнутого типа, то обмотки возбуждаются при помощи остаточной силы намагниченности.

Вариант #2 — устройство на магнитах

Для магнитного генератора подходит коллекторный, шаговый (синхронный бесщеточный) двигатель и прочие.

Обмотка с большим количеством полюсов увеличивает показатель КПД. В сравнение с классической схемой (где КПД 0,86) 48-полюсная обмотка позволяет сделать мощность генератора больше

В процессе сборки магниты крепятся на вращающуюся ось и устанавливаются в прямоугольную катушку. Последняя при вращении магнитов вырабатывает электростатическое поле.

Вариант #3 — паровой генератор

Для генератора на пару используют печь с водяным контуром. Работает устройство за счет тепловой энергии пара и турбинных лопастей.

Чтобы самостоятельно сделать генератор на пару, понадобится печь с водяным (охлаждающим) контуром

Это замкнутая система с массивной немобильной установкой, требующей контроля и охлаждающего контура для превращения пара в воду.

Вариант #4 — устройство на дровах

Для генератора на дровах используют печи, включая походные. К стенкам печей закрепляют элементы Пельтье и располагают конструкцию в корпус радиатора.

Принцип работы генератора следующий: при нагревании поверхности проводниковых пластин с одной стороны другая охлаждается.

Чтобы самостоятельно сделать генератор на дровах, можно использовать любые печи. Генератор работает за счет элементов Пельтье, нагревающих и охлаждающих проводниковые пластины

На полюсах пластин появляется электрический ток. Наибольшая разница между температурами пластин обеспечивает генератор максимальной мощностью.

Агрегат более работоспособен при минусовых температурных режимах.

Устройство и принцип работы

Главная задача этого агрегата – преобразование механической энергии в электрическую, а это зарядка аккумулятора и обеспечение питанием всего оборудования. Генератор автомобиля расположен в передней части двигателя и заводится посредством коленчатого вала. Рассмотрим, какова схема этой установки. Ротор, создающий магнитное поле, представляет собой вал с обмоткой возбуждения, каждая половина которой размещена в противоположных полюсных половинах. Контактные (токосъемные) кольца питают обмотку генератора. Ротор приводится в движение ременными передачами привода. Конструкция статора предполагает наличие сердечника и обмотки, он вырабатывает ток переменного значения, который посредством колец потечет дальше по цепи. Но сначала нужно снять заряд с рамки. Чтобы ток возбуждения попадал на кольца, применяется щеточный узел.

Двигаемся дальше. Выпрямительный блок занимается преобразованием переменного (синусоидального) напряжения, которое вырабатывается генератором автомобиля, и получает характеристику постоянного типа. Он представляет собой пластины, где расположены диоды (6 штук). В некоторых случаях схема подключения обмотки возбуждения содержит еще одну отдельную пару. В этом случае ток не может протекать через аккумулятор при незаведенном движке. А подсоединив обмотку по типу «звезда» и дополнительные силовые диоды (2 шт.), можно увеличить мощность устройства на 15%.

Поддержание напряжения автомобильного генератора в заданных пределах осуществляется посредством регулятора. Он влияет на частоту и продолжительность импульсов тока. Схема регулятора состоит из датчиков и исполнительных элементов. Они определяют, сколько обмотка возбуждения должна быть включена в сеть. При неисправности регулятора исчезает стабилизация подаваемого на АКБ напряжения. Основная часть конструктивных элементов генератора расположена в корпусе, который производится из алюминиевого сплава. Он легкий, быстро рассеивает тепло, отчего температура не достигает критических отметок, и немагнитный.

Схема генератора автомобиля особенности подключения.

Конструкция генераторов различных производителей принципиально не отличается между собой. Основным их отличием является схема генератора автомобиля, типа реле возбуждения и как следствие, схема возбуждения генератора. Между собой регуляторы разных типов не взаимозаменяемые, так как одни коммутирующий элемент в одном случае подаёт «+» на обмотку возбуждения (рис. 1), а другой по «-» (рис. 2). Плюс во втором случае на обмотку возбуждения подаётся постоянно при включении замка зажигания. Эти схемы генератора ВАЗ (классика кроме 04, 05, 07) и др. автомобильных генераторов имеющих регуляторы напряжения находящиеся вне генератора.

Серьёзный недостаток, генераторов с выносным регулятором напряжения, большое число соединений в цепи регулятора, что может привести к потерям и следовательно к перезаряду АБ. Более перспективна схема где регуляторы расположены внутри. Для предотвращения подачи напряжения на обмотку возбуждения при заглушенном двигателе, через регулятор напряжения, используются три дополнительных диода. Так же в этой схеме введена подпитка обмотки возбуждения от контрольной лампы, параллельно которой находится сопротивление которое подпитывает обмотку при перегорании лампы (рис. 3 и 4).

На зарубежных генераторах в место диодов в выпрямительном блоке последнее время применяются стабилитроны, что позволяет снизить скачки напряжения при аварийной работе генератора и предотвращения выхода из строя электронных устройств.

Последнее время появились отечественные генераторы без дополнительных диодов в выпрямительном блоке что немного упрощает его , но существенно усложняет и удорожает регуляторы напряжения, что при нашем производстве существенно снижает долговечность генератора. Эта схема генератора автомобиля впервые применялась в японских и американских генераторах.

Ремонт иномарок, ДВС, КПП, ходовой и электрооборудования автомобилей.

Время работы: понедельник-пятница с 8:00 до 18:00; суббота, воскресенье-выходной

Схема генератора

Чтобы суметь в нужный момент возбудить генератор, без применения аккумулятора, следует внимательно изучить схему и принцип действия разных модификаций агрегатов. Важным моментом является понимание того, для чего он нужен вообще и какие именно функции выполняет.

Говоря простым языком генератор – это устройство, которое служит для преобразования механической энергии в электрическую. Он обеспечивает питанием все потребители электрического тока в автомобиле и подзаряжает АКБ во время работы двигателя. Размещается он в передней части мотора, а работает за счет кривошипного вала. На «гибридах» генератор используется как стартер. Однако такая схема иногда встречается и на авто с двигателем внутреннего сгорания, имеющих систему «стоп-старт».

Исходя из этого можно сделать вывод, что генераторы бывают двух типов, отличающихся по конструкции. Главное их различие заключается в том, как располагается выпрямительный блок, приводной шкив и вентилятор. Помимо этого, генераторы имеющие разную схему, отличаются и габаритными размерами. Основные параметры, независимо от типа, остаются одинаковыми – все они имеют в конструкции ротор (индуктор), статор и т.д.

Ниже приведена схема генератора отечественного производства. Встречается он практически на всех моделях авто нашего производства.

А это более современная схема, часто встречается на ВАЗ от «восьмерки» и выше.

Теперь рассмотрим схему подключения генератора и как он работает.

Основная задача, которую выполняет ротор генератора – создает магнитополе. В этих целях вал имеет обмотку возбудителя (или ВО). Он располагается на выступах «плюсовых» половинок. На валу тоже имеется контактная группа, которая состоит из двух медных ободков. По ним проходит напряжение на обмотку возбуждения, для этого они припаиваются к контактам ВО.

Помимо этого, на вал устанавливаются и крыльчатка вентилятора. Там же крепится и приводной шкив (ВПД). Еще одним важным узлом ротора является подшипник.

Относительно функций статора – он преобразовывает постоянное напряжение в переменное и состоит из металлического сердечника набранного из пластинок и обмотки. Статор имеет 46 специальных пазов, в которые укладывается обмотка. Он позволяет разместить в себе три обмотки, благодаря чему можно получить трехфазное соединение.

Выпрямительный блок служит для преобразования тока, который производится генератором из переменного в постоянный для последующей подачи его на потребители. Блок состоит из шести полупроводниковых диодов, на каждую фазу по два – плюс и минус генератора.

Щетки нужны для передачи вырабатываемого тока на кольца возбудителя. Состоят они из графитового элемента, щеточек, пружин для удержания и поджима. На современных генераторах этот узел совмещен с регулятором в единое целое.

«Шоколадка» необходима для поддержания токов генератора в заданных значениях. Сегодня можно встретить электронные либо гибридные регуляторы. В гибридном исполнении в схеме имеются радиодетали и электроприборы. В электронных – части выполнены при помощи технологий ТМТ.

Привод генератора работает благодаря вращениям ременной передачи. Это придает такую же скорость вращения и индуктору, что и требуется для его нормальной работы.

Отсюда в большинстве моделей генераторов обмотка возбуждения подключена отдельной группой, которая состоит из двух полупроводниковых диодов. Диодная схема чаще называется выпрямителем, и препятствует перетеканию тока из аккумулятора обратно по цепи в генератор при стоячем двигателе.

Стоит знать. При соединении обмотки схемой «звездочка» на нулевой вывод устанавливается два дополнительных силовых диода, это позволяет повысить мощность генератора на 15 %. Выпрямительный блок устанавливается на генератор с помощью припайки либо фиксируется механическим способом.

Регулятор является крайне важной деталью в схеме генератора, он отвечает за стабилизацию напряжения при изменениях частоты вращения кривошипного вала. Этот процесс полностью автоматический и проходит путем воздействия на обмотку возбуждения

То есть регулятор отвечает за частоту напряжения и длительность импульсов.

Интересно. Регулятор изменяет силу тока, которая подается на аккумулятор благодаря термокомпенсации напряжения. Проще говоря, чем теплее, тем меньше тока поступает на АКБ.

Обрыв обмотки возбуждения

Обрыв обмотки возбуждения чаще всего происхо­дит в местах пайки концов обмотки к контактным кольцам.

При обрыве обмотки возбуждения в обмотке статора индуктируется ЭДС не более 5 В, обусловленная оста­точным магнетизмом стали ротора. При такой неисп­равности аккумуляторная батарея не будет заряжаться. Для определения обрыва необходимо отъединить конец обмотки возбуждения от щетки, а затем к этому концу и к зажиму Ш генератора присоединить через лампу или вольтметр провода от аккумуляторной батареи.

В случае обрыва обмотки лампа загораться не бу­дет, а стрелка вольтметра не отклонится. Для нахож­дения катушки с обрывом обмотки провода от зажимов батареи подключают к концам каждой катушки. Пос­ле этого тщательно проверяют место пайки соединений и выводные концы катушек обмотки возбуждения. Об­наруженное место обрыва устраняют ьескислотной пайкой, пользуясь мягкими припоями. Когда обрыв произошел внутри катушки, ее заменяют или перематывают.

Варианты подключения обмоток трехфазных генераторов

При работе 3-х фазного генератора в каждой его обмотке создается ЭДС в форме синусоидального колебания. Все вектора разнесены по углу вращения на 120° и могут быть описаны формулами:

Для подключения обмоток генератора в связанную систему применяется одна из двух схем:

— “звезда” (Y); — “треугольник” (Δ).

“Звезда”. Для схемы “звезды” все выходы обмоток фаз статора подключают к единой общей точке N, именуемую нейтральной либо нулевой точкой. Входа (начала) обмоток каждой фазы А, В и С подключают к линейным выводам генератора.

“Треугольник”. Для этой схемы соединения формируют выходные фазы:

“А” подключением выхода обмотки А ко входу обмотки C; — “В” подключением выхода обмотки В ко входу обмотки А; — “С” подключением выхода обмотки С ко входу обмотки В.

Точки подключения А, В и С используются как линейные выводы у генератора.

Векторные диаграммы. У работающего генератора, обмотки которого соединены по схеме “звезда” диаграмма векторов напряжений имеет форму равностороннего треугольника с центром в начале координат и расположенного симметрично относительно оси ординат.

Под термином фазного напряжения понимают разность потенциалов между общим выводом N и линейным А, В или С и маркируют: UA, UB, UC. Напряжения в фазах генератора равны ЭДС обмоток: ЕА=UА, ЕВ=UВ, ЕС=UС.

Линейное напряжение генератора измеряется между двумя любыми его выводами и обозначается по наименованию выбранных фаз: U, U, U. Величина вектора линейного напряжения определяется геометрической разностью векторов соответствующих фаз:

У генератора с обмотками соединенными по схеме “треугольник” диаграмма векторов напряжений тоже имеет форму равностороннего треугольника, но он относительно центра координат провернут на 30° по направлению движения часовой стрелки.

Расчеты параметров трехфазных сетей проводятся математическими способами (например, комплексный метод) и способами геометрических сложений.

Для этого выбирают один из векторов в качестве начального, ориентируют его в комплексной плоскости с учетом направления и величины. Остальные вектора достраивают по углам сдвига их фаз относительно выбранного начального вектора с учетом их величин.

Обычные расчеты для схемы соединения “звезда” проще начинать с определения напряжения вектора фазы А, который в данной системе выходит из начала координат комплексной плоскости в направлении на север. Выражения фазных напряжений в комплексной форме для такого расчета описываются формулами:

Формулы для линейных векторов имеют следующий вид:

Для схем “треугольник” за начальный отсчет принимают вектор линейного напряжения UАВ. Формулы вычисления фазных векторов напряжений принимают выражения:

Вектора линейных напряжений описываются формулами:

Проведя геометрические вычисления не сложно определить линейную величину вектора по значению фазной:

Важно! Схема соединения обмоток “треугольник” для генератора практически не пригодна для реального использования, поэтому ее запрещено применять. В фазах схемы “треугольник” образуется общий контур, у которого возникает суммарная ЭДС Σe=eAB+eBC+eCA

Значения полных сопротивлений в обмотках маленькие и даже небольшая величина суммарной ЭДС Σe>0 вызывает в магистралях “треугольника” уравнительные токи, которые сопоставимы с номинальным значением тока в генераторе. Это создает большие потери энергии и значительно уменьшает КПД генератора

В фазах схемы “треугольник” образуется общий контур, у которого возникает суммарная ЭДС Σe=eAB+eBC+eCA. Значения полных сопротивлений в обмотках маленькие и даже небольшая величина суммарной ЭДС Σe>0 вызывает в магистралях “треугольника” уравнительные токи, которые сопоставимы с номинальным значением тока в генераторе. Это создает большие потери энергии и значительно уменьшает КПД генератора.

У энергетиков существует определение номинального напряжения для 3-х фазной системы. Им называют линейные напряжения, которые выражаются в киловольтах (кВ, kV). Их представляют значениями 0,4; 1,1; 3,5; 6,3; 10,5; 22; 35; 63; 110; 220; 330; 500; 750.

Для потребителей электроэнергии номинальную величину 3-х фазного напряжения допускается указывать соотношениями линейных и фазных напряжений UЛ/UФ. Для электросети 0,4 кВ оно будет иметь вид: 380/220 вольт.

Источник



Принцип работы автомобильного генератора, особенности схемы

Принцип работы генераторной установки основан на эффекте электромагнитной индукции.

В случае прохождения магнитного потока через катушку и его изменения на выводах появляется и изменяется напряжение (в зависимости от скорости изменения потока). Обратный процесс работает аналогично.

Следовательно, для достижения магнитного потока к катушке должно быть приложено напряжение.

Оказывается, для создания переменного напряжения необходимы две составляющие:

  • Источник магнитного поля.
  • Катушка (с нее снимается напряжение).

Не менее важным элементом, как отмечалось выше, является ротор, который служит источником магнитного поля.

Полярная система узла имеет остаточный магнитный поток (даже при отсутствии тока в обмотке).

Этот параметр небольшой, поэтому он может вызывать самовозбуждение только на высоких оборотах. По этой причине сначала через обмотку ротора пропускают небольшой ток для намагничивания устройства.

Вышеупомянутая цепочка подразумевает прохождение тока от АКБ через контрольную лампу.

Основным параметром здесь является сила тока, которая должна быть в пределах нормы. Если значение тока завышено, аккумулятор быстро разряжается, а если он слишком низкий, увеличивается риск возбуждения генератора на двигатель ХХ (холостой ход).

С учетом этих параметров подбирается и мощность лампочки, которая должна составлять 2-3 Вт.

Как только напряжение достигает необходимого параметра, лампочка гаснет и обмотки возбуждения получают питание от собственного генератора автомобиля. В этом случае блок питания переходит в режим самовозбуждения.

Напряжение снимается с обмотки статора, которая выполнена в трехфазном исполнении.

Узел состоит из 3-х отдельных (фазных) обмоток, намотанных по определенному принципу на магнитопровод.

Токи и напряжения в обмотках смещены друг относительно друга на 120 градусов. При этом сами обмотки могут быть собраны в двух вариантах: «звезда» или «треугольник».

Если выбрана схема «треугольник», фазные токи в 3 обмотках будут в 1,73 раза меньше, чем полный ток, подаваемый генераторной установкой.

Вот почему схема «треугольник» чаще всего используется в автомобильных генераторах большой мощности».

Это связано именно с меньшими токами, благодаря которым можно намотать обмотку проводом меньшего сечения.

Этот же провод можно использовать и для соединения звездой».

Чтобы создаваемый магнитный поток шел должным образом и шел на обмотку статора, катушки располагаются в специальных пазах магнитопровода.

Вихревые токи возникают из-за появления магнитного поля в обмотках и магнитопроводе статора.

Действие последнего приводит к нагреву статора и снижению мощности генератора. Чтобы уменьшить этот эффект, при изготовлении магнитопровода используются стальные пластины.

Генерируемое напряжение поступает в бортовую сеть через группу диодов (выпрямительный мост), о которой говорилось выше.

После размыкания диоды не создают сопротивления и позволяют току свободно течь в бортовой сети.

Но с обратным напряжением я не прошел. Фактически остается только положительная полуволна.

Некоторые производители автомобилей заменяют диоды стабилитронами для защиты электроники.

Главная особенность деталей — это способность не пропускать ток до определенного параметра напряжения (25-30 Вольт).

После превышения этого предела стабилитрон «ломается» и пропускает обратный ток. В этом случае напряжение на «плюсовом» проводе генератора остается неизменным, что не представляет опасности для устройства.

Между прочим, регуляторы используют способность стабилитрона поддерживать постоянную U на клеммах даже после «отказа.

В результате после пересечения диодного моста (стабилитронов) напряжение выпрямляется и становится постоянным.

Во многих типах генераторных установок обмотка возбуждения имеет свой выпрямитель, собранный из 3-х диодов.

Благодаря такому подключению ток разряда от АКБ исключен.

Диоды в обмотке возбуждения работают по аналогичному принципу и подают на обмотку постоянное напряжение.

Здесь выпрямитель состоит из шести диодов, три из которых отрицательные.

Во время работы генератора ток возбуждения ниже параметра, выдаваемого автомобильным генератором.

Поэтому для выпрямления тока на обмотке возбуждения достаточно диодов с номинальным током до двух Ампер.

Для сравнения: силовые выпрямители имеют номинальный ток до 20-25 Ампер. Если необходимо увеличить мощность генератора, устанавливается еще один кронштейн с диодами.

Маркировка клемм на корпусе

При самостоятельной диагностике мультиметром для владельца актуальна информация, как маркируются клеммы, выведенные на корпус генератора. Единого обозначения не существует, но общие принципы соблюдаются всеми производителями:

  • с выпрямителя выходит «плюс», маркирующийся «+», 30, В, В+ и ВАТ, «минус», обозначенный «–», 31, D-, B-, E, M или GRD;
  • от возбуждающей обмотки отходит клемма 67, Ш, F, DF, E, EXC, FLD;
  • «плюсовой» провод от дополнительного выпрямителя на контрольную лампу обозначен D+, D, WL, L, 61, IND;
  • фазу можно узнать по волнистой линии, буквам R, W или STA;
  • нулевая точка статорной обмотки обозначена «0» или МР;
  • клемма реле регулятора для подключения к «плюсу» бортовой сети (обычно АКБ) обозначена 15, Б либо S;
  • кабель от замка зажигания должен подключаться к клемме регулятора напряжения, маркированной IG;
  • бортовой компьютер подсоединяется к выводу реле регулятора с обозначением F или FR.

Рис. 22 Расположение клемм на корпусе генератора

Других обозначений не существует, а вышеуказанные присутствуют на корпусе генератора не в полном объеме, поскольку встречаются на всех существующих модификациях электроприборов.

Основные неисправности автомобильного генератор

Электрогенераторы для автомобилей надежные, но неисправности все же случаются. Они бывают:

  • механические;
  • электрические.

К механическим относится:

  • износ ремня привода, щеток, контактных колец, шкива, подшипников;
  • разрушение корпуса, болтов крепления, пружин.

Обнаружить их просто по стукам и другим посторонним шумам. Ремонт сводится к замене неисправных деталей.

Чаще случаются электрические неисправности:

  • нарушение функциональности или выход из строя регулятора напряжения;
  • обрывы, замыкания обмоток на роторе/статоре;
  • пробой выпрямителя;
  • сбои функциональности реле.

Для определения неисправностей необходимо знать характерные признаки:

  • на панели мигает и горит непрерывно лампа разряда аккумуляторной батареи;
  • фары горят тускло, во время работы двигателя слышен дребезжащий звук;
  • из генератора слышен звук, напоминающий писк, вой.

Неисправную деталь желательно выявить сразу. Если пробит регулятор напряжения, аккумуляторная батарея постоянно перезаряжается. При неисправных кольцах или щетках аккумулятор перезаряжается или недозаряжается, быстро требуется замена.

Чтобы самостоятельно провести диагностику и ремонт, необходимо хорошо знать, из чего состоит генератор, как расположены детали, для чего каждая предназначена, как работает. Сначала проверяется предохранитель, потом расположение агрегата, целостность корпуса, ремня, проводки, вращение ротора, контактные кольца, щетки.

Из механических повреждений самым частым считается износ подшипников. Необходимо их снять, оценить состояние посадочных мест, при необходимости заменить на новые. Свист во время разгона свидетельствует о проблемах с ремнем. Заменить его тоже не совсем просто.

Проверка обмоток ротора проводится мультиметром, сопротивление должно быть 1,8-5 Ом. Если цифра меньше, на витках короткое замыкание, если больше, обмотка оборвана. Чтобы проверить обмотки статора, необходимо отсоединить их от выпрямителя. Об отсутствии у обмоток контакта с корпусом свидетельствует бесконечное значение на приборе.

Диоды выпрямителя тоже проверяются мультиметром, меняя щупы местами. Полупроводниковая деталь неисправна, если показания при проверке не зависят от расположения щупов. Диодный мост нужно менять полностью, если окислились контакты.

Современный автомобильный генератор достаточно сложный, для проверки, диагностики, ремонта лучше обратиться к опытным специалистам, обладающим необходимыми знаниями, использующим при работе специальный стенд, заменяющим неисправные детали на соответствующие оригинальные.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector