Равенство работ при использовании простых механизмов. “золотое правило” механики

Простейшие механизмы

Для облегчения совершения механической работы издавна используются различные приспособления — простые механизмы.

Простые механизмы — это устройства, в которых работа совершается только за счет механической энергии. Простые механизмы (рычаг, наклонная плоскость, блок и др.) служат для преобразования силы, их применяют при совершении работы в тех случаях, когда надо действием одной силы уравновесить другую силу.

Наклонная плоскость

Ее используют в тех случаях, когда надо поднять тяжелый груз на некоторую высоту.

Рассмотрим гладкую наклонную плоскость (рис. 1). Рассчитаем силу F, которую надо приложить к телу массой m, чтобы поднять его равномерно на высоту h.

Рис. 1

Запишем основное уравнение динамики\. Спроецируем это равенство на ось Ox\. Отсюда искомая сила

\(~F = mg \sin \alpha = mg \frac hl \Rightarrow \frac{mg}{F} = \frac lh,\)

т.е для равномерного поднятия груза с помощью наклонной плоскости необходимо приложить силу, во столько раз меньшую силы тяжести груза, во сколько раз длина наклонной плоскости больше ее высоты.

Рычаг

Рычагом называют имеющее неподвижную ось вращения твердое тело, на которое действуют силы, стремящиеся повернуть его вокруг этой оси. Различают рычаги первого и второго рода.

Рычагом первого рода называют рычаг, ось вращения О которого расположена между точками А и В приложения сил, а сами силы направлены в одну сторону (рис. 2, а). Это коромысло равноплечих весов, железнодорожный шлагбаум, ножницы и др.

Рис. 2

Рычаг второго рода — рычаг, ось вращения О которого расположена по одну сторону от точек приложения сил, а сами силы направлены противоположно друг другу (рис. 2, б). Это гаечные ключи, щипцы для раскалывания орехов, двери и др.

Условие равновесия рычага вытекает из M1 = M2.

Так как M1 = F1l1 и M2 = F2l2, где l1 и l2 — плечи сил, действующих на рычаг, то \(~\frac{F_1}{F_2} = \frac{l_2}{l_1}\) — условие равновесия рычага.

При равновесии рычага под действием двух сил модули этих сил обратно пропорциональны их плечам.

С помощью рычага можно получить выигрыш в силе, т.е. меньшей силой можно уравновесить большую силу.

Блок

Блоки используют для поднятия грузов. Блок представляет собой колесо с желобом, укрепленное в обойме. По желобу блока пропускают веревку, трос или цепь. Неподвижным называют такой блок, ось которого закреплена и при подъеме грузов она не поднимается и не опускается (рис. 3, а, б).

Рис. 3

Неподвижный блок можно рассматривать как равноплечий рычаг, у которого плечи приложенных сил равны радиусу колеса. Следовательно, из правила моментов mgr = Fr вытекает, что неподвижный блок выигрыша в силе не дает (F = mg). Он позволяет менять направление действия силы.

Рис. 4

На рисунке 4, а, б изображен подвижный блок (ось блока поднимается и опускается вместе с грузом). Такой блок поворачивается около мгновенной оси О. Правило моментов для него будет иметь вид

\(~mgr = F \cdot 2r \Rightarrow F = \frac{mg}{2}.\)

Таким образом, подвижный блок дает выигрыш в силе в два раза.

Обычно на практике применяют комбинацию неподвижного блока с подвижным (рис. 5). Неподвижный блок применяется только для удобства. Он, изменяя направление действия силы, позволяет, например, поднимать груз, стоя на земле.

Рис. 5

Как рассчитать простой рычажный механизм самостоятельно?

Перед непосредственным созданием механизма следует провести расчеты основных показателей, а также построить схему распределения нагрузок. Силовой расчет рычажного механизма проводится после определения исходных данных:

  1. Создается кинематическая схема массы и моментов, инерции звеньев и положения центров массы.
  2. Учитывается закон движения механизма.
  3. Определяется внешнее силовое нагружение.
  4. Рассчитывается угол перекрытия рычажном механизме.

Проводимый кинематический и силовой предусматривает создание системы координат, которая используется для расчета кинематических характеристик. Кулисно-рычажный вариант исполнения проектируется при создании системы координат и обозначением всех сил. Для проектирования требуется большое количество различных формул, при этом в конце следует выполнить проверку.

Как правило, рассматриваемая работа выполняется инженерами, который учитывают ГОСТ проектирование. Это связано с тем, что структурная формула плоских рычагов выбирается в зависимости от области их применения.

Цилиндровые замки с фалевой защелкой

Врезной замок с защелкой функционален, удобен в использовании.

Цилиндровые замки с фалевыми защелками закрываются под механическим воздействием. Она является вспомогательным элементом запорного механизма. Фалевая защелка бывает с фиксатором язычка и без него, с одной или двумя ручками. Такие замки часто используют в жилых и производственных помещениях.

Фалевые ручки используют для входных и межкомнатных дверей. В ней нет никакой функциональной особенности, это скорей элемент декора. Удобство в том, что при изменении интерьера, чтобы замыкающее устройство вписалось в образ – достаточно подобрать ручку по стилю.

Ручки для входных дверей устойчивы к внешним воздействиям, выполнены из прочных материалов (если сравнивать с межкомнатными).

По типу нажатия ручки бывают:

  • Нажимные (для входных дверей).
  • Поворотные (для межкомнатных дверей).

Нажимная ручка тоже подойдёт для межкомнатных конструкций. Выбор зависит от предпочтений покупателя.

ТЕХНОЛОГИЯ

§ 18. Понятие о машине и механизме

В современном мире человека окружают различные машины. Многие из них ты видел.

Машина — это устройство, предназначенное для выполнения какой-либо работы путём преобразования одного вида энергии в другой. Машины разделяют на пять классов.

Машины-двигатели — превращают энергию любого вида в механическую, например электрическую в механическую (стиральная машина) или тепловую в механическую (двигатель в автомобиле).

Машины-генераторы — преобразуют механическую энергию в другой вид энергии, например: турбина электростанции превращает энергию текущей в реке воды в электрическую энергию.

Технологические машины предназначены для изменения размеров и форм заготовок, например станки для обработки древесины и металла.

Транспортные и подъёмно-транспортные машины служат для перемещения людей, грузов, изделий, например автомобили, подъёмные краны, лифты.

Информационные машины предназначены для преобразования информации, например электронно-вычислительные машины (ЭВМ) или персональные компьютеры (ПК).

Машины состоят из одного или нескольких связанных между собой механизмов. Механизм — это устройство, имеющее несколько деталей, в котором при движении одного элемента (звена) другие звенх>я выполняют определённые согласованные движения (табл. 3).

Таблица 3

Виды механизмов(передач)

В винтовом механизме при вращении винта гайка, удерживаемая от вращения, начинает перемещаться вдоль оси винта, например в винтовом механизме переднего и заднего зажимов столярного верстака.

Фрикционный механизм (фрикционная передача) состоит из двух катков (дисков), которые прижаты друг к другу. При вращении одного катка вращается и другой.

Ремённая передача передаёт вращение от одного шкива 1 к другому 2 с помощью ремня 3 (см. табл. 3). В сверлильном станке, с которым ты ознакомишься в § 29, вращение шпинделю со сверлом передаётся от электродвигателя с помощью ремённой передачи.

Детали, из которых состоят изделия, соединяются между собой тем или иным образом. Соединения деталей могут быть подвижными и неподвижными (табл. 4).

Таблица 4

Виды соединений

Все машины и механизмы состоят из отдельных деталей. Детали могут быть простыми и сложными (табл. 5). Простые детали (болт, гайка, шайба) применяют почти во всех изделиях. Сложными называют детали, которые имеют непростую форму и на их изготовление требуется много времени (например, станина станка, зубчатое колесо ручной дрели и др.).

Таблица 5

Знакомимся с профессиями

Машинист — специалист, занимающийся управлением различных машин, например машинист электровоза, тепловоза, экскаватора, подъёмного крана. Эта профессия требует большой ответственности, поскольку связана с перемещением людей или грузов.

Водитель — это специалист, который управляет легковым или грузовым автомобилем. Он знает устройство автомобиля, правила его обслуживания, может выполнять несложный ремонт.

Наладчик — специалист, обслуживающий технологические машины — станки. Это рабочий высокой квалификации, который выполняет наладку и настройку станков, следит за точностью их работы. Оператор ЭВМ — это специалист, который занимается вводом и обработкой информации на электронно-вычислительных машинах. Он должен знать устройство компьютера, уметь обслуживать компьютерную технику, работать с программными комплексами и многое другое.

Лабораторно-практическая работа № 16

Ознакомление с машинами, механизмами, соединениями, деталями

  1. Ознакомьтесь с машинами, имеющимися в школьной учебной мастерской. Запишите в рабочую тетрадь их названия, определите, к какому классу они относятся.

  2. Ознакомьтесь с механизмами, имеющимися в мастерской. Запишите в рабочую тетрадь их названия и назначение.

  3. Запишите в рабочую тетрадь примеры подвижных и неподвижных соединений, кроме указанных в таблице 4.

  4. Найдите в машинах и механизмах, имеющихся в мастерской, простые и сложные детали.

Найди в Интернете информацию о том, какие интересные машины и механизмы помогают человеку в его жизни.

Новые слова и понятия

Машина, технологические машины, информационные машины, механизмы, соединения деталей (подвижные, неподвижные), детали (простые, сложные), машинист, водитель, наладчик, оператор ЭВМ.

Проверяем свои знания

  1. Чем отличается машина-двигатель от машины-генератора?

  2. Что такое механизм?

  3. Какие механизмы передачи движения ты знаешь?

  4. Как ты думаешь, деревянная ручка лобзика — это простая деталь или сложная?

Требования безопасности

При проектировании и монтаже рычажного механизма учитываются требований безопасности. Они во многом зависят от области применения устройства, а также особенностей самого механизма.

Среди особенностей этого момента можно отметить следующее:

  1. При изготовлении должен подбираться материал, который будет соответствовать всем требованиям. Примером можно назвать высокую коррозионную стойкость. При проектировании указывается то, какой именно материал должен применяться при изготовлении устройства. Часто отдается предпочтение углеродистой стали и легированным сплавам. Некоторые элементы могут быть изготовлены из уплотнительных и других материалов, все зависит то конкретного случая.
  2. При проектировании учитывается то, каким образом происходит перераспределение нагрузки. Это связано с тем, что в некоторых местах она будет критической.
  3. Под активным элементом при подъеме тяжелых объектов не должно находится людей, другого оборудования, а также частей самого рычажного механизма. Это связано с высокой вероятностью падения переносимого груза.
  4. Перед непосредственным применением оборудования следует проводить визуальный осмотр, который позволяет определить наличие или отсутствие повреждений. Кроме этого, должно проводится периодическое обслуживание. Даже незначительный дефект может стать причиной существенного снижения прочности рычажного механизма. Периодическое обслуживание позволяет существенно продлить срок службы устройства.
  5. Запрещается применять механизм не по предназначению. Перед каждым его использованием проверяется надежность крепления. Нагрузка должна оказываться на конструкцию соответствующим образом, так как в противном случае происходит неправильное перераспределение силы. Именно поэтому при проектировании указывается то, каким образом устройство должно устанавливаться и как использоваться.
  6. При применении учитывается то, на какую максимальную нагрузку рассчитано оборудование. Слишком высокий показатель может стать причиной, по которой происходит повреждение основных элементов. При проектировании учитывается то, какая нагрузка может оказываться на конструкцию.

Как правило, соответствующее руководство по применению устройства составляется непосредственно на месте его эксплуатации в соответствии с установленными нормами. Это связано с тем, что рычажные механизмы получили весьма широкое распространение, могут устанавливаться в качестве составного узла другого оборудования.

При этом узел оборудован тремя важными независимыми системами:

  1. Гидравлическая. Эта часть устанавливается в большинстве случаев для передачи усилия. Гидравлика получила весьма широкое распространение, так как она предназначена для непосредственной передачи усилия. Гидравлическая часть основана на подаче специальной жидкости, при помощи которой проводится передача усилия. Гидравлика несет с собой опасность по причине того, что подвижный элементы могут передавать усилие. Поэтому все основные элементы должны быть защищены от воздействия окружающей среды, для чего проводится установка различных кожухов.
  2. Механическая. Механика отвечает за непосредственную передачу усилия и достижения других целей. Неправильная работа устройства может стать причиной повреждения и деформации. Механика также защищается специальными кожухами, так как попадание посторонних элементов запрещается.
  3. Электрическая. Для управления механизмом проводится установка электрической части. Она должна быть защищена от воздействия окружающей среды, так как даже незначительное механическое воздействие может стать причиной повреждения магистрали электроснабжения.

Опасность с собой несет и электрическая часть, которая состоит из конечных выключателей. Схема подключения предусматривает использование как минимум двух выключателей, устройство должно обесточиваться в случае выхода из строя одного из них.

Механическая система защиты действует путем прерывания подачи масла в гидравлический цилиндр. При этом проводится слив масла с цилиндра в общую емкость. Подобная система срабатывает даже при незначительном повреждении устройства.

Презентация на тему: » 1.Для чего нужны простые механизмы? 2.Какие виды простых механизмов существуют? 3.Где простые механизмы встречаются в природе? 4.Дают ли простые механизмы.» — Транскрипт:

2

1. Для чего нужны простые механизмы? 2. Какие виды простых механизмов существуют? 3. Где простые механизмы встречаются в природе? 4. Дают ли простые механизмы выигрыш в силе? 5. Есть ли простые механизмы во мне?

3

В физике простыми механизмами называют приспособлении типа рычагов или винтов. Они предназначены для того, чтобы уменьшить необходимое для производства работы усилие человека и использовать это усилие наиболее эффективно. Часто несколько простых механизмов соединяют вместе. В результате получаются более сложные механизмы сверла, часы. Колесо одно из важнейших изобретений человечества. На нем основано действие многих механизмов.

4

Виды простых механизмов

5

Рычаги Рычаг-простейшее механическое устройство, представляющее собой твёрдое тело (перекладину),вращающееся вокруг точки опоры. Стороны перекладины от точки опоры, называются «плечами»рычага.

6

Наклонная плоскость Наклонная плоскость это плоская поверхность, установленная под углом, отличным от прямого и/или нулевого, к горизонтальной поверхности. Наклонная плоскость позволяет преодолевать значительное сопротивление, прилагая сравнительно малую силу на большем расстоянии, чем то, на которое нужно поднять груз.

7

Блок Блоки Блоки – простые механические устройства, позволяющие изменять силу: либо по направлению, либо по направлению и по модулю. Любой блок представляет собой колесо с жёлобом по окружности, вращающееся вокруг своей оси. Жёлоб предназначен для каната, цепи, ремня и т.п.

8

Клин Клин простой механизм в виде призмы, рабочие поверхности которого сходятся под острым углом. Используется для раздвижения, разделения на части обрабатываемого предмета. Клин одна из разновидностей механизма под названием «наклонная плоскость».

9

Ворот Ворот простейший механизм, предназначенный для создания тягового усилия на канате (тросе, верёвке). Синоним простейшей лебёдки.

10

Винты Винт крепёжное изделие в виде стержня с наружной резьбой на одном конце и конструктивным элементом для передачи крутящего момента на другом. Передающим усилие элементом могут являться различного рода головки, шлицы в торце стержня и т. п. От шурупа винт отличается тем, что не имеет конического сужения на конце и не создаёт резьбу при вкручивании. Винт предназначен для образования резьбового соединения или фиксации.

11

Башенные краны используются при строительстве высотных домов Рычаги и блоки в устройстве экскаватора

12

Колесо Колесо́Колесо́ движитель, круглый (как правило), свободно вращающийся или закреплённый на оси диск, позволяющий поставленному на него телу катиться, а не скользить. Широко применяется для транспортировки грузов, повсеместно используется в различных механизмах и инструментах. Модель колеса неизвестного назначения обнаружена при раскопках древней стоянки Сунгирь Владимирской области (25 тыс. лет назад).

13

Зубчатая передача Зубчатая передача это механизм или часть механизма механической передачи, в состав которого входят зубчатые колёса.

14

Одноплечий рычаг руки человека Рычаги передней конечности собаки

15

Сила тяги мышц и связок, прикреплённых к затылочной кости Сила тяжести головы Пример работы рычага – действие свода стопы при подъёме на полупальцы

16

Короткое плечо рычага стережёт вход в цветок Длинное плечо рычага

17

«Колющие орудия» многих животных и растений по форме напоминают клин

18

У кошек рычагами являются подвижные когти У членистоногих – большинство сегментов их наружного скелета

19

Короткие лапы крота рассчитаны на развитие больших сил при малой скорости У двустворчатых моллюсков простыми механизмами являются створки раковины

20

Применение условия равновесия рычага при работе с тачкой Применяя условие равновесия рычага, первому человеку легче нести груз, если он находится ближе к плечу

22

Я проверил на практике: 1. Наклонная плоскость даёт выигрыш в силе во столько раз, во сколько её длина больше высоты. При увеличении крутизны наклонной плоскости выигрыш в силе уменьшается. 2. Так как действие стопы при подъёме тела на полупальцы является примером работы рычага, то я решил оценить свою мышечную силу при ходьбе. Моя мышечная сила при ходьбе 388Н. 3. Выигрыш в силе винта равен 22.

23

Выводы: нет ни одной семьи, которая не пользуется простыми механизмами; 100 % членов семей пользуются клином (разновидность наклонной плоскости);100% членов семей используют в своей жизни грабли, лопаты, мотыги, кусачки, гвоздодеры, веники и другие инструменты (рычаги).

24

Выводы: не все учащиеся 7»А» класса могут применять свои знания о рычагах, — некоторые школьники умеют правильно использовать свойства рычагов, хотя им никто этого не объяснял.

Использование простых механизмов

Подробности
Просмотров: 381

С древности простые механизмы часто использовались комплексно, в самых различных сочетаниях.
Комбинированный механизм состоит из двух или большего числа простых. Это не обязательно сложное устройство; многие довольно простые механизмы тоже можно считать комбинированными.
Например, в мясорубке имеются ворот (ручка), винт (проталкивающий мясо) и клин (нож-резак). Стрелки наручных часов поворачиваются системой зубчатых колес разного диаметра, находящихся в зацеплении друг с другом. Один из наиболее известных несложных комбинированных механизмов – домкрат. Домкрат представляет собой комбинацию винта и ворота.

Выигрыш в силе, создаваемый комбинированным механизмом, равен произведению выигрышей отдельных механизмов, входящих в его состав.
Простые механизмы — это труженники со стажем работы более чем 30 веков, но они ничуть не состарились.

Примерно такой лифт установил в «золотом доме» римский император Нерон (64 г. до н.э.).

Так поднимали мосты в средневековых замках.

На любой строительной площадке работают башенные подъемные краны — это сочетание рычагов, блоков, воротов. В зависимости от «специальности» краны имеют различные конструкции и характеристики.

Портальные поворотные краны. Грузоподъемность — 300 кН. Скорость подъема груза — 0,17 м/с.

Строительные башенные краны . Грузоподъемность — 20-400 кН. Скорость подъема до 1м/с.

Плавучие краны — самые сильные из семейства подъемных кранов: их грузоподъемность 4000 кН. Они поднимают затонувшие корабли, снимают суда с мели, с их помощью ремонтируют суда в открытом море, опускают на дно батисферы и камеры для ремонта кабелей и трубопроводов.

Рычаги, блоки, вороты, лебедки — непременные составные части путе- и трубоукладчиков.

Простые механизмы используются и в устройстве шагающих экскаваторов. В его большом ковше может поместиться экскаватор для городских строек.

Простые механизмы помогут передвинуть дом, чтобы расширить улицу. Под дом подводят рамы, опускают на катки, уложенные на рельсы, и включают электролебедки.

НАДО ПОДУМАТЬ

Как рассчитать максимальный груз, который может поднять автокран не перевернувшись?
Вот тут-то и пригодятся знания правила равновесия рычага!
Максимальную силу тяжести груза, который сможет поднять автокран, следует рассчитать по правилу равновесия рычага:F тяжести груза х L2 = Fтяжести крана х L1
тогдаFтяжести груза = Fтяжести крана х L1/L2

А как следует поступить опытному крановщику, если необходимо поднять еще более тяжелый груз?
Ответ:
1) уменьшить величину L2
или
2) увеличить отношение L1/L2.

Следующая страница «Занимательные фишки»

Назад в раздел «Занимательные фишки по физике для 7 класса»

Коленно-рычажный механизм

Современный коленно-рычажный механизм применяется в тех случаях, когда на исполнительный орган следует передать большое усилие, но при этом движущая сила не должна быть большой. При этом часто в качестве привода применяется гидравлика, которая во многом определяет основные свойства конструкции. Достоинствами можно назвать нижеприведенные моменты:

  1. Высокая скорость перемещения при холостом ходе. За счет этого возникает возможность проводить установку устройства в случае, когда нужно обеспечить быстрый ход подвижного элемента. Примером можно назвать оборудование, предназначенное для фрезерования или точения, так как оно имеет большое количество подвижных узлов, которые должны периодически менять свое положение.
  2. Небольшие линейные размеры рабочего гидравлического цилиндра. Это свойство определяет возможность создания компактной конструкции. В последнее время больше всего цениться именно компактность, так как оборудование становится все легче и меньше. За счет этого упрощается установка и обслуживание.
  3. Низкий показатель количества рабочей жидкости в системе. За счет этого существенно снижаются расходы при обслуживании. Время от времени приходится проводить пополнение объема жидкости, так как работа конструкции приводит к его расходу.

Однако, у подобного варианта исполнения есть довольно большое количество недостатков, среди которых отметим:

  1. Довольно высокая стоимость привода и необходимость в периодическом обслуживании. Именно поэтому устройство устанавливается в том случае, когда нужно провести передачу большого усилия. При производстве рычажного механизма подобного типа применяются материалы с высокой устойчивостью к воздействию окружающей среды.
  2. Есть вероятность повреждения магистрали, что становится причиной вытекания рабочей жидкости и возникновения других проблем. Конструктивные особенности конструкции определяют то, что есть вероятность возникновения самых различных проблем, к примеру, проскок максимального положения.

Выделяют несколько разновидностей рассматриваемого устройства, все они характеризуются определенными эксплуатационными характеристиками.

Качественные показатели рычажных механизмов

Для формирования общего описания устройства применяются различные качественные показатели, которые могут касаться самых различных моментов. Наиболее распространенными можно назвать:

  1. КПД считается наиболее важным параметром, который рассматривается при создании самых различных механизмов. Эта безразмерная величина определяет количество энергии, которая применяется для достижения поставленных целей с учетом потерь. Стоит учитывать тот момент, что подобный показатель рычажного механизма находится всегда меньше единицы, то есть при работе возникают потери. При приближении значения КПД к единице существенно снижаются потери, а также повышается качество рычажного механизма. Провести расчет рассматриваемого показателя достаточно сложно, так как для этого требуются самые различные формулы.
  2. Ход механизма также учитывается при проектировании подходящего устройства. Ход определяется начальной и конечной точкой. При этом стоит учитывать, что в некоторых случаях провести расчеты достаточно сложно, так как траектория движения может быть криволинейной.
  3. Угол размаха коромысла измеряется путем вычитания двух крайних точек положения на момент работы. В большинстве случаев устройство совершает повторяющееся цикличное движение.
  4. Коэффициент, отражающий неравномерность распределения средней скорости. Этот показатель определяется соотношением времени холостого хода к рабочему. Провести соответствующие расчеты можно только при применении формул, а также построении чертежа.
  5. Угол давления и передачи. Подобный параметр представлен соотношением острого угла между векторной активной силы, которая действует на предшествующем звене.

Каждый параметр рассматриваемые в отдельности, после чего составляется оценочный анализ, отражающий общее состояние механизма.

Устройство и принцип действия одинарного механизма смыкания

Подобный агрегат представлен сочетанием нескольких конструктивных элементов, за счет которых обеспечивается передача и увеличение усилия. Основными деталями можно назвать:

  1. Две неподвижные траверсы. Их соединение проводится при помощи цилиндрической колонны.
  2. Крепление проводится при помощи гаек и контргаек, которые существенно повышают прочность конструкции.
  3. Передача усилия осуществляется за счет гидравлического цилиндра. Его крепление проводится при помощи шарниров.
  4. Также есть серьги.

Принцип действия механизма достаточно сложный. Характеризуется он следующим образом:

  1. Смещение поршня вниз в гидравлическом блоке происходит выпрямление серьги, она совмещается с горизонтальной осью.
  2. В результате совмещения осей происходит соединение шарниров.
  3. Шарниры монтируются так, чтобы при контакте расстояние между ними было меньше, чем суммарная длина обеих серег.
  4. Выпрямление серег происходит за счет распорного усилия.

Приведенная выше информация определяет то, что главным недостатком конструкции становятся нескомпенсированные боковые усилия, которая возникают из-за нагрузки втулок и колонн. Именно поэтому рекомендуется использовать подобный вариант исполнения только в случае передачи небольшого усилия.

Схематическое представление винта

Для наглядного представления одного витка резьбы винта можно использовать прямоугольный треугольник, который навивается на цилиндр. Его сторона АВ (катет) будет соответствовать так называемому шагу винта – тому расстоянию, на которое смещается гайка при одном полном обороте, а сторона ВС – длине окружности основания цилиндра, на который наносится винтовая резьба. Гипотенузе АС будет соответствовать край одного оборота резьбы. Край другого оборота резьбы гайки А’С’ будет примыкать к ней.

Рисунок 2. Схематическое представление винта в виде треугольника, навитого на цилиндр

ВС образует окружность, длина которой равна 2πr (r – радиус цилиндра с резьбой). При вращении винта происходит его нажим на резьбу гайки, который и заставляет ее совершать дальнейшее движение по оси винта. Поскольку обе поверхности, как правило, тщательно шлифуют и используют дополнительную смазку, мы зачастую можем в расчетах пренебрегать силами трения между гайкой и винтом. Следовательно, направление сил давления между ними будет практически перпендикулярным относительно плоскости их соприкосновения. Обозначим силу, действующую со стороны винта на гайку, как F1, а другую силу, действующую со стороны гайки, как F2. При вращении винта приходится преодолевать составляющую второй силы, направленной против движения винта. При этом в противоположном направлении на гайку будет действовать составляющая силы F1. Составляющая силы F2 будет уменьшаться при уменьшении угла a (при заданном значении F1). Мы получили такое же соотношение между этими силами, какое существует для клина, угол которого при основании равен a. Значит, зная правила винта, его шаг и диаметр, можно определить угол клина, эквивалентного винту. В случае, если клин острый, винт делают утолщенным (т.е. увеличивают величину r). Именно такими, к примеру, являются винты простых приспособлений для поднятия тяжелых предметов (домкратов). Действие устройства показано на рисунке ниже.

Рисунок 3

Спектр применения винтов очень широк. Прежде всего, это всевозможные приспособления для крепления или сдавливания (шурупы, болты и т.д.). Используя винт для пресса, мы можем создать большую внешнюю силу давления, приложив сравнительно небольшое внешнее усилие.

`banner`

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector