Как подобрать редуктор к электродвигателю

Передаточное отношение зубчатой передачи

Значение передаточного числа зубчатой передачи совпадает передаточным отношением. Величина угловой скорости и момента силы изменяется пропорционально диаметру, и соответственно количеству зубьев, но имеет обратное значение.

При схематическом изображении величины силы и перемещения шестерню и колесо можно представить в виде рычага с опорой в точке контакта зубьев и сторонами, равными диаметрам сопрягаемых деталей. При смещении на 1 зубец их крайние точки проходят одинаковое расстояние. Но угол поворота и крутящий момент на каждой детали разный.

Например, шестерня с 10 зубьями проворачивается на 36°. Одновременно с ней деталь с 30 зубцами смещается на 12°. Угловая скорость детали с меньшим диаметром значительно больше, в 3 раза. Одновременно и путь, который проходит точка на наружном диаметре имеет обратно пропорциональное отношение. На шестерне перемещение наружного диаметра меньше. Момент силы увеличивается обратно пропорционально соотношению перемещения.

Крутящий момент увеличивается вместе с радиусом детали. Он прямо пропорционален размеру плеча воздействия – длине воображаемого рычага.

Передаточное отношение показывает, насколько изменился момент силы при передаче его через зубчатое зацепление. Цифровое значение совпадает с переданным числом оборотов.

Передаточное отношение редуктора вычисляется по формуле:

где U12 – передаточное отношение шестерни относительно колеса;

ω1 и ω2 – угловые скорости ведущего и ведомого элемента соединения;

Зубчатая передача имеет самый высокий КПД и наименьшую защиту от перегруза – ломается элемент приложения силы, приходится делать новую дорогостоящую деталь со сложной технологией изготовления.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Многие покупатели перед выбором червячного редуктора или вовремя, сталкиваются с проблемой не знания, какое именно передаточное число им нужно. Эта статья Вам поможет с этим разобраться.

Во-первых, нужно правильно понимать два понятия – это номинальное передаточное число (отношение) и фактическое. Первое обозначение придумано для округления значений по факту и стандартизации числовых показателей. К примеру, червячный редуктор Ч 100 имеет фактически передаточное отношение 15,5, что приравнивается к номинальному числу 16. То есть все показатели будут соответствовать в большую или меньшую сторону: 7,75=8, 10=10; 12=12,5; 24=25; 31=31,5, 20=20, 40=40, 48=50, 64=63, 84=80.

Во-вторых, существуют термины как тихоходный вал и быстроходный. Первый это вал выходной, то есть который крутит приводной в действие механизм с помощью редуктора, а второй это вал за который крутят электродвигателем (принцип червячного мотор редуктора) или иным приспособлением.

Главная пара в автомобиле

Многие из автомобилистов не раз слышали о «главной паре», но не все ясно представляют, что это такое — главная пара в автомобиле. Рассмотрим главную пару на примере заднеприводного автомобиля. В заднем мосту находится редуктор заднего моста, который состоит из различных планетарных шестерен. Через двигатель и коробку передач крутящий момент передается на карданный вал, который в свою очередь вращает большую планетарную шестерню.

Главная пара в автомобиле

Число Главной пары вытекает именно из количества оборотов, которое совершает маленькая планетарка для прохождения большого круга.

На большинстве современных легковых автомобилей отношение главной пары колеблется от 3.7 до 4.3:1. То есть во втором случае маленькая планетарка пройдет большую дистанцию для прохождения одного круга.

Именно та главная пара, которая отличается большим числом — называется короткой главной парой. Короткая главная пара легче разгоняет машину

Грузовые автомобили всегда имеют короткую ГП, ведь для них не важна менее высокая максимальная скорость, для них самое важное — это тяга на низах и возможность преодолеть подъем

Длинная главная пара замедляет набор скорости, ведь двигателю становится тяжелее раскручивать такую ГП. Зато при достаточно мощном моторе, длинная главная пара будет обеспечивать более высокую максимальную скорость, и в целом более высокую скорость при тех же оборотах мотора, что на короткой ГП.

На мощный заднеприводный автомобиль можно установить самоблокирующийся дифференциал. Такая главная пара позволяет обеспечить равномерное вращение колес в поворотах, а также одинаковое вращение, при том что автомобиль левым и правым колесом стоит на разном покрытии.

Ведь если обычная машина одним колесом станет на лед, а другим на асфальт, колесо стоящее на льду будет буксовать, а колесо остающееся на асфальте не будет получать крутящий момент. Машина с самоблокирующейся главной парой не окажется в такой ситуации, ведь и на то колесо, под которым лед и на то — под которым асфальте, передается равный крутящий момент.

Главная пара с самоблокирующимся дифференциалом очень эффективна на спортивных автомобилях, ведь при разгоне минимизируется вероятность пробуксовки, на которую бы уходило время.

Передаточные числа задних редукторов других автомобилей

С редукторами автомобилей ВАЗ более-менее понятно. А что можно сказать о других автомобилях? К примеру, Горьковский автозавод имеет большое количество современных моделей как среднетоннажных, так и легковых грузовых машин. Наиболее популярные модели ГАЗ – это «Газель ГАЗ-3302» и «Соболь ГАЗ-2752». Если не рассматривать полноприводные модификации этих автомобилей, то передаточное число редуктора заднего будет либо 5,125, либо 4,556, либо 4,3.

Самый тяговитый редуктор достался автомобилям ГАЗ с двигателями ЗМЗ406 и ЗМЗ402. Отличается лучшими характеристиками по мощности и рекомендуется для владельцев авто, перевозящих тяжёлые грузы и работающих в жестких условиях. Редуктор с меньшим числом будет давать большую динамику, как более скоростной. При этом следует метить относительно меньший ресурс эксплуатации.

Для полноты картины рассмотрим зарубежные варианты редукторов и их числа. Хорошим вариантом для сравнения будут заднеприводные модели немецкого автогиганта BMW. Передаточные числа редуктора БМВ колеблются в диапазоне от 3,07 до 4,1. При этом количество моделей агрегатов превышает десятку. Уже по этому показателю можно понять, как часто зарубежные конструкторы вносят изменения в узлы автомобилей.

Читать также: Компрессор из двигателя ока своими руками

Наиболее динамичный редуктор с числом 3,07 имеют модели серии Е90, Е91 и Е92. Если смотреть на мощные варианты, то можно выделить БМВ Х5 с 3-литровым двигателем, имеющий передаточное число заднего редуктора 4,1.

Как рассчитать передаточное число

Шестерня и колесо имеют разное количество зубов с одинаковым модулем и пропорциональный размер диаметров. Передаточное число показывает, сколько оборотов совершит ведущая деталь, чтобы провернуть ведомую на полный круг. Зубчатые передачи имеют жесткое соединение. Передающееся количество оборотов в них не меняется. Это негативно сказывается на работе узла в условиях перегрузок и запыленности. Зубец не может проскользнуть, как ремень по шкиву и ломается.

Расчет без учета сопротивления

В расчете передаточного числа шестерен используют количество зубьев на каждой детали или их радиусы.

u12 = ± Z2/Zи u21 = ± Z1/Z2,

Где u12 – передаточное число шестерни и колеса;

Z2 и Z1 – соответственно количество зубьев ведомого колеса и ведущей шестерни.

Знак «+» ставится, если направление вращения не меняется. Это относится к планетарным редукторам и зубчатым передачам с нарезкой зубцов по внутреннему диаметру колеса. При наличии паразиток – промежуточных деталей, располагающихся между ведущей шестерней и зубчатым венцом, направление вращения изменяется, как и при наружном соединении. В этих случаях в формуле ставится «–».

При наружном соединении двух деталей посредством расположенной между ними паразитки, передаточное число вычисляется как соотношение количества зубьев колеса и шестерни со знаком «+». Паразитка в расчетах не участвует, только меняет направление, и соответственно знак перед формулой.

Обычно положительным считается направление движения по часовой стрелке. Знак играет большую роль при расчетах многоступенчатых редукторов. Определяется передаточное число каждой передачи отдельно по порядку расположения их в кинематической цепи. Знак сразу показывает направление вращения выходного вала и рабочего узла, без дополнительного составления схем.

Вычисление передаточного числа редуктора с несколькими зацеплениями – многоступенчатого, определяется как произведение передаточных чисел и вычисляется по формуле:

u16 = u12×u23×u45×u56 = z2/z1×z3/z2×z5/z4×z6/z5 = z3/z1×z6/z4

Зубчатое зацепление жесткое. Детали не могут проскальзывать относительно друг друга, как в ременной передаче и менять соотношение количества вращений. Поэтому на выходе обороты не изменяются, не зависят от перегруза. Верным получается расчет скорости угловой и количества оборотов.

КПД зубчатой передачи

Для реального расчета передаточного отношения, следует учитывать дополнительные факторы. Формула действительна для угловой скорости, что касается момента силы и мощности, то они в реальном редукторе значительно меньше. Их величину уменьшает сопротивление передаточных моментов:

  • трение соприкасаемых поверхностей;
  • изгиб и скручивание деталей под воздействием силы и сопротивление деформации;
  • потери на шпонках и шлицах;
  • трение в подшипниках.

Для каждого вида соединения, подшипника и узла имеются свои корректирующие коэффициенты. Они включаются в формулу. Конструктора не делают расчеты по изгибу каждой шпонки и подшипника. В справочнике имеются все необходимые коэффициенты. При необходимости их можно рассчитать. Формулы простотой не отличаются. В них используются элементы высшей математики. В основе расчетов способность и свойства хромоникелевых сталей, их пластичность, сопротивление на растяжение, изгиб, излом и другие параметры, включая размеры детали.

Что касается подшипников, то в техническом справочнике, по которому их выбирают, указаны все данные для расчета их рабочего состояния.

При расчете мощности, основным из показателей зубчатых зацепления является пятно контакта, оно указывается в процентах и его размер имеет большое значение. Идеальную форму и касание по всей эвольвенте могут иметь только нарисованные зубья. На практике они изготавливаются с погрешностью в несколько сотых долей мм. Во время работы  узла под нагрузкой на эвольвенте появляются пятна в местах воздействия деталей друг на друга. Чем больше площадь на поверхности зуба они занимают, тем лучше передается усилие при вращении.

Все коэффициенты объединяются вместе, и в результате получается значение КПД редуктора. Коэффициент полезного действия выражается в процентах. Он определяется соотношением мощности на входном и выходном валах. Чем больше зацеплений, соединений и подшипников, тем меньше КПД.

Как определить передаточное число редуктора

Одним из устройств, наиболее часто применяемых сегодня в различных механизмах, является редуктор. Он представляет собой развитие идеи рычага и служит для передачи момента между вращающимися шкивами. Основным параметром, характеризующим конкретный редуктор, является передаточное число. Определить его можно путем совершения расчетов на основе сведений о типе и параметрах ступеней редуктора.

Вам понадобится Определите передаточное число редуктора, состоящего из одной зубчатой передачи. В устройствах подобного типа вращающий момент передается от ведущего вала ведомому посредством взаимодействия зубьев шестерней, установленных на них

Шестерни могут быть как цилиндрические, так и конические — в данном случае это не важно. Вначале определите количество зубьев шестерни ведущего вала путем простого подсчета

Затем ту же операцию проделайте для шестерни вала ведомого. Разделите второе значение на первое. Это и будет искомым передаточным числом редуктора.

При расчете передаточного числа редуктора, выполненного на основе цепной передачи, действуйте аналогично первому шагу. Посчитайте число зубьев ведущей и ведомой звездочек, а затем разделите второе значение на первое.

Для оценки передаточного числа редуктора на ременной передаче необходимо знать радиусы (или диаметры) его ведущего и ведомого шкивов

Обратите внимание на то, что это должны быть значения радиусов окружностей, по которым проходит внутренняя часть ремня при его соприкосновении со шкивами. Поэтому если шкив выполнен в виде ролика с пазом для удержания ремня, необходимо измерять радиус или диаметр его внутренней части

В данном случае для вычисления передаточного числа достаточно разделить радиус ведомого шкива на радиус ведущего.

В редукторах на основе червячной передачи ведущим шкивом всегда является тот, на котором расположен червяк, а ведомым — на котором находится червячное колесо. За один оборот червяка колесо (шестерня) поворачивается на количество зубьев, равное числу заходов червяка (в простейшем случае это единица). Поэтому передаточное число такого редуктора высчитывается простым делением количества зубьев червячного колеса на число заходов червяка.

Передаточное число редуктора, составленного из нескольких передач, определите путем последовательного перемножения передаточных чисел его отдельных ступеней.

ПЕРЕДАТОЧНОЕ ОТНОШЕНИЕ РЕДУКТОРА К РАСПРЕДЕЛЕНИЕ ЕГО ПО СТУПНЯМ

Очевидно, что передаточное отношение редуктора есть произведение передаточных отношений ступеней. Для двухступенчатых редукторов . Действительно, . Умножив числитель и знаменатель на , получим , где , a .

Выбор передаточных отношений и оказывает существенное влияние на габариты, массу, условия смазки и стоимость редуктора. Ниже приводятся рекомендации по разбивке передаточного отношения двухступенчатых редукторов, подводящие получить приблизительное равенство диаметров равнопрочных колес быстроходной я тихоходной ступеней при использовании материалов колес с одинаковыми механическими характеристиками. Это, в свою очередь, дает возможность спроектировать редуктор с наименьшими габаритами, массой и стоимостью при прочих равных условиях.

Передаточное отношение тихоходной ступени рассчитывают по формуле . Коэффициенты и выбирают в зависимости от типа редуктора, вида зубьев и коэффициента расчетной ширины венца тихоходной ступени .

Для трехосных цилиндрических редукторов (рис. 1.2 а, б) , , если обе ступени или прямозубые, или обе -косозубые и , , если быстроходная ступень косозубая, а тихоходная — прямозубая.

Для соосного редуктора (рис. 1.2 в) , .

Для коническо-цилиндрического редуктора коэффициенты и выбирают из таблицы 1.2 в зависимости от коэффициента расчетной ширины зубчатого венца тихоходной ступени .

Выбор коэффициента определяет размеры установочной площади и их соотношение В/L (ряс. 1.2). Так, с увеличением отношение установочных размеров В/L увеличивается, а установочная площадь В L уменьшается. Значения коэффициента в редукторах общего машиностроения принимают в пределах 0.6 … 1.4.

Коэффициент расчетной ширины венца быстроходной ступени коническо-цилиндрического редуктора рассчитывают по формуле

Для трехосных цилиндрических редукторов .

Для соосных редукторов расчетную ширину зубчатого венце определяет в результате расчета ступени.

Таблица 1.2
Значения коэффициентов и для коническо-цилиндрического редуктора
Коэффициент Тип зубьев колес тихоходной ступени
Прямые Косые
0.6 1.57 0.291 1.64 0.302
0.8 1.60 0.299 1.77 0.298
1.0 1.68 0.300 1.87 0.296
1.2 1.76 0.298 1.95 0.295
1.4 1.79 0.296 2.02 0.294

Исходными дынными для расчета ступени являются передаточное отношение ступени , коэффициент расчетной ширины венца , угловые скорости шестерни , и колеса , крутящий момент на шестерне Т. Если скорости двигателя и ИУ заданы в об/мин, то , , .

Крутящий момент на шестерне быстроходной ступени определяют по формуле , а на шестерне тихоходной ступени — ,

где — потребная мощность двигателя, кВт;

— КПД зацепления быстроходной ступени.

Отказ от учета потерь в муфте и подшипниках позволяет упростить ввод дачных в ВМ я практически не влияет на размеры передачи.

Результаты расчета и выбора исходных параметров быстроходной и тихоходной ступеней сводят в таблицу 1.3, вписывая числовые значения в две правых колонки вместо идентификаторов (буквенно-цифровое имя) рассчитываемых или выбираемых параметров.

Таблица 1.3
Исходные параметры к расчету ступеней
Наименование параметра Размерность Символ Ступень
В Т
Передаточное отношение UB UT
Угловая скорость шестерни рад/с OMEG1 OMEG2
Угловая скорость колеса рад/с OMEG2 OMEG3
Крутящий момент Н м TB1 TT1
Коэффициент расчетной ширины венца PSIB PSIT

Как рассчитать передаточное число

Шестерня и колесо имеют разное количество зубов с одинаковым модулем и пропорциональный размер диаметров. Передаточное число показывает, сколько оборотов совершит ведущая деталь, чтобы провернуть ведомую на полный круг. Зубчатые передачи имеют жесткое соединение. Передающееся количество оборотов в них не меняется. Это негативно сказывается на работе узла в условиях перегрузок и запыленности. Зубец не может проскользнуть, как ремень по шкиву и ломается.

Расчет без учета сопротивления

В расчете передаточного числа шестерен используют количество зубьев на каждой детали или их радиусы.

Где u12 – передаточное число шестерни и колеса;

Z2 и Z1 – соответственно количество зубьев ведомого колеса и ведущей шестерни.

Знак «+» ставится, если направление вращения не меняется. Это относится к планетарным редукторам и зубчатым передачам с нарезкой зубцов по внутреннему диаметру колеса. При наличии паразиток – промежуточных деталей, располагающихся между ведущей шестерней и зубчатым венцом, направление вращения изменяется, как и при наружном соединении. В этих случаях в формуле ставится «–».

При наружном соединении двух деталей посредством расположенной между ними паразитки, передаточное число вычисляется как соотношение количества зубьев колеса и шестерни со знаком «+». Паразитка в расчетах не участвует, только меняет направление, и соответственно знак перед формулой.

Обычно положительным считается направление движения по часовой стрелке. Знак играет большую роль при расчетах многоступенчатых редукторов. Определяется передаточное число каждой передачи отдельно по порядку расположения их в кинематической цепи. Знак сразу показывает направление вращения выходного вала и рабочего узла, без дополнительного составления схем.

Вычисление передаточного числа редуктора с несколькими зацеплениями – многоступенчатого, определяется как произведение передаточных чисел и вычисляется по формуле:

Способ расчета передаточного числа позволяет спроектировать редуктор с заранее заданными выходными значениями количества оборотов и теоретически найти передаточное отношение.

Зубчатое зацепление жесткое. Детали не могут проскальзывать относительно друг друга, как в ременной передаче и менять соотношение количества вращений. Поэтому на выходе обороты не изменяются, не зависят от перегруза. Верным получается расчет скорости угловой и количества оборотов.

КПД зубчатой передачи

Для реального расчета передаточного отношения, следует учитывать дополнительные факторы. Формула действительна для угловой скорости, что касается момента силы и мощности, то они в реальном редукторе значительно меньше. Их величину уменьшает сопротивление передаточных моментов:

  • трение соприкасаемых поверхностей;
  • изгиб и скручивание деталей под воздействием силы и сопротивление деформации;
  • потери на шпонках и шлицах;
  • трение в подшипниках.

Для каждого вида соединения, подшипника и узла имеются свои корректирующие коэффициенты. Они включаются в формулу. Конструктора не делают расчеты по изгибу каждой шпонки и подшипника. В справочнике имеются все необходимые коэффициенты. При необходимости их можно рассчитать. Формулы простотой не отличаются. В них используются элементы высшей математики. В основе расчетов способность и свойства хромоникелевых сталей, их пластичность, сопротивление на растяжение, изгиб, излом и другие параметры, включая размеры детали.

Что касается подшипников, то в техническом справочнике, по которому их выбирают, указаны все данные для расчета их рабочего состояния.

При расчете мощности, основным из показателей зубчатых зацепления является пятно контакта, оно указывается в процентах и его размер имеет большое значение. Идеальную форму и касание по всей эвольвенте могут иметь только нарисованные зубья. На практике они изготавливаются с погрешностью в несколько сотых долей мм. Во время работы узла под нагрузкой на эвольвенте появляются пятна в местах воздействия деталей друг на друга. Чем больше площадь на поверхности зуба они занимают, тем лучше передается усилие при вращении.

Все коэффициенты объединяются вместе, и в результате получается значение КПД редуктора. Коэффициент полезного действия выражается в процентах. Он определяется соотношением мощности на входном и выходном валах. Чем больше зацеплений, соединений и подшипников, тем меньше КПД.

Планетарный редуктор и планетарная передача — теория

Рассмотрен принцип действия планетарной передачи, указаны преимущества и недостатки применения планетарных редукторов. Приведена схема планетарной передачи и расчет передаточного отношения редуктора.

Планетарный редуктор и планетарная передача

Зубчатая передача

Зубчатая передача

Устройство планетарного механизма основано на вращении тел зубчатой передачи, которые непосредственно взаимодействуют с главным двигателем. Именно такое соединение и служит для передачи силы от редуктора до других механизмов с изменением скорости их вращения. Таким образом происходит передача крутящего момента от двигателя на колеса через основную ось, главную шестерню и сателлиты.
Вообще устройство зубчатой передачи достаточно простое и понятное. Вот, что входит в конструкцию обычной передачи.
Для соединения с главной передачей имеются две зубчатые шестерни, таким образом происходит зацепление. При движении происходит передача скорости вращения с главной шестерни на ведомую за счет зацепов. Наименьшее колесо в конструкции называется шестерней, а наибольшее будет главным и ведомым колесом.

Планетарный механизм

Схема планетарной передачи

Редукторы с зубчатой передачей, колеса которых имеют движущиеся оси, называются планетарными. Внутри расположены зубчатые колеса, перемещающиеся на своих, геометрических осях. Такие шестерни получили название сателлиты, потому что вся конструкция очень похожа на солнечную систему. Главные шестерни называются центральными колесами. Сателлиты крепятся на своих осях и вращаются вокруг главной передачи при помощи водила, которое движется так же, как и центральное колесо, вокруг главной оси. Центральное колесо остается неподвижным, а другие шестерни можно заблокировать или разблокировать полностью.

Если центральное колесо неподвижно, то второе постоянно движется. Ведущим здесь является вал подвижного колеса, а ведомым-водила. Если разблокировать все зубчатые колеса вместе с ведомым, то такая передача будет дифференциальной. Выделяют два основных и ведущих звена и одно ведомое.

При подробном рассмотрении простейшей планетарной передачи мы видим: ведущее колесо или водило, ведомое с тремя сателлитами, вращающимися вокруг центральной оси и центральное, неподвижное колесо.

Передаточное отношение

Чтобы рассчитать передаточное отношение редуктора, необходимо заметить определенное количество неподвижных звеньев(1,2,3 и Н) и условно задать им поступательное вращение со скоростью wH, равное скорости вращения водила, но с обратным знаком. Скорость зацепления зубчатых колес не изменяется. Таким образом скорость + wH +(- wH)=0, то есть водило будет остановлено. Если водило неподвижно, тогда планетарная передача превращается в зубчатую, где все колеса неподвижны. Сателлиты не учитываются. Их вращение будет положительным при одинаковом вращении шестерен, а отрицательным при противоположном вращении:i=(? 1 -? H)/(? 3 -? H)=-(z 3 /z 1), где z 1 и z. Если колесо 3 закреплено неподвижно, то угловая скорость водила Н = 1 /[1+(z 3 /z 1)], а передаточное отношение i =1+z 3 /z 1.

Как обычно, для работы редуктора с одноступенчатой передачей при больших нагрузках становится мало, поэтому стали изготавливать двух и трех ступенчатые редукторы, а иногда и четырех ступенчатые. Чаще всего применяется двухступенчатая передача.

Двухступенчатая планетарная передача.

Схема двухступенчатой планетарной передачи

Для других редукторов передаточное отношение высчитывается таким же способом. Для двухступенчатого редуктора, где центральное колесо 1—ведущее, водило Н2 — ведомое, центральные колеса 3 и 4 закреплены в корпусе, передаточное отношение i=1+z 2 z 3 /z 1 z 4.

При всех достоинствах планетарного редуктора, нужно знать, что при сильном вращении шестерни, КПД всего механизма сильно ухудшается.

Нагрузка от центрального колёса водила восприниматься всеми шестеренками (1-6) одинаково, при этом их размеры значительно меньше, чем у обычной передачи. Следовательно, главными преимуществами планетарной передачи являются большая скорость вращения, небольшой вес и компактность. Дифференциальные передачи используются в автомобиле для разложения движения, а так же в различных станках. К минусам такой передачи относится ее трудоемкое изготовление и сложная сборка на предприятии. Такие редукторы благодаря своим преимуществам находят свое применение во многих отраслях производства: в машиностроении, приборах, станкостроении, в транспорте.

Использован материал из книги «Детали машин» Гузенков П.Г.

Так же по теме предлагаем статью «Планетарный редуктор» с примером расчета передаточного отношения и анимированными схемами ступеней планетарного редуктора.

Угол поворота и период обращения

Рассмотрим точку А на предмете, вращающимся вокруг своей оси. При обращении за какой-то период времени она изменит своё положение на линии окружности на определённый угол. Это угол поворота. Он измеряется в радианах, потому что за единицу берётся отрезок окружности, равный радиусу. Ещё одна величина измерения угла поворота – градус.

Когда в результате поворота точка А вернётся на своё прежнее место, значит, она совершила полный оборот. Если её движение повторится n-раз, то говорят о некотором количестве оборотов. Исходя из этого, можно рассматривать 1/2, 1/4 оборота и так далее. Яркий практический пример этому – путь, который проделывает фреза при фрезеровании детали, закреплённой в центре шпинделя станка.

Внимание! Угол поворота имеет направление. Оно отрицательное, когда вращение происходит по часовой стрелке и положительное при вращении против движения стрелки. Если тело равномерно продвигается по окружности, можно говорить о постоянной угловой скорости при перемещении, ω = const

Если тело равномерно продвигается по окружности, можно говорить о постоянной угловой скорости при перемещении, ω = const.

В этом случае находят применения такие характеристики, как:

  • период обращения – T, это время, необходимое для полного оборота точки при круговом движении;
  • частота обращения – ν, это полное количество оборотов, которое совершает точка по круговой траектории за единичный временной интервал.

Интересно. По известным данным, Юпитер обращается вокруг Солнца за 12 лет. Когда Земля за это время делает вокруг Солнца почти 12 оборотов. Точное значение периода обращения круглого гиганта – 11,86 земных лет.

Передаточное отношение (передаточное число)

При создании ремённой передачи нужно понимать, во сколько мы выиграем или проиграем в скорости и силе, чтобы собрать устройство с нужными характеристиками.

В этом нам поможет передаточное отношение, которое записывается буквой i. Оно показывает, во сколько раз снизилась скорость вращения на выходе. Согласно золотому правилу механики во столько же раз увеличится сила.

Например, передаточное отношение i = 1 : 1 показывает, что 1 оборот на входе даст 1 оборот на выходе, а отношение i = 5 : 1 показывает, что 5 оборотов на входе дает 1 оборот на выходе, то есть скорость упала в 5 раз (передача понижающая).

Если дробь можно сократить, её сокращают. Например, i = 5 : 25 = 1 : 5 (передача повышающая).

Передаточное отношение можно записать в виде числа, поделив числитель на знаменатель. Например, i = 5 : 1 = 5, или i = 1 : 4 = 0,25. Можно сделать вывод, что:

Формулу для расчета передаточного отношения можно вывести из правила рычага. Передаточное отношение для ремённой передачи рассчитывается так:

Узнать размеры шкивов можно с помощью линейки. Самый точный метод измерения диаметра – с помощью штангенциркуля.

Если передача многоступенчатая (двух-, трехступенчатая и т.д.), то общее передаточное отношение будет вычисляться как произведение отдельных передаточных отношений. Передаточное отношение для шкивов, жестко закрепленных на общей оси, не считается — скорость их вращения будет всегда одинаковой!

Эта формула справедлива для этого рисунка:

Таким же образом передаточное отношение можно посчитать через соотношения радиусов.

Типы редукторов

Все виды устроены по схожему принципу, разница заключается только в типе зубчатой передачи. Чаще всего встречаются цилиндрические, конические, глобоидные, комбинированные, червячные и планетарные, но последнее время конструкторы прибегают к комбинированным конструкциям, что позволяет совместить преимущества нескольких типов.

Конструкция разных типов позволяют передавать усилие между узлами, которые располагаются в различных площадях, будут они перпендикулярные (конический редуктор), параллельные (цилиндрический) или пересекающиеся валы (червячные).

Диапазон передаточного числа может разнится от в несколько единиц до нескольких тысяч, что зависит от количества ступеней. Сейчас наиболее распространены механизмы, при изготовлении которых используются нескольких ступеней. Это позволяет комбинировать несколько типов передач и добиться максимально эффективной работы. Рассмотрим основные типы.

Цилиндрический редуктор

Довольно популярные при разработке и производстве машин различного назначения. Эффективно выполняют свои функции при работе с мощными установками, при этом показывают высокий КПД, превышающий 90 %. Чаще всего используется при работе параллельных и сносных валов. Может применяться с различным количеством ступеней, от которых зависит передаточное число, оно может колебаться от 1,5 до 400.

Червячный редуктор

Имеют довольно простую конструкцию, из-за чего обрели широкую популярность. Одним из плюсов также является низкая стоимость в сравнении с аналогами. Количество ступеней обычно ограничивается одной или двумя. При этом диапазон передаточного числа червячного редуктора может находиться в диапазоне от 5 до 10000, которую можно рассчитать по специальной формуле. Недостатком этого типа является низкий КПД и ограниченные мощности силовых установок, с которыми он работает. Состоит из зубчатого колеса и цилиндрического, реже глобоидного, червяка в виде винта.

Планетарный редуктор

Особый тип, который выгодно отличается от аналогов, имея ряд преимуществ. Благодаря чему получил широкое распространение в тяжелом машиностроении. Конструкция этой модели позволяет добиться высокого передаточного числа при работе с мощнейшими силовыми установками. При этом его размеры могут быть значительно меньшими, чем габариты аналогов. Механизм назван планетарным, из-за специфического расположения конструкционных элементов, к которым относятся: сателлиты, водило, солнечная и кольцевая шестерни.

Передача усилия происходит через вал на солнечную шестерню, которая находится в зацепе со всеми сателлитами. В это время кольцевая шестерня находится в статичном положении. Модель отличается высоким КПД, и работой в диапазоне передаточного числа от 6 до 450.

Выбор типа узла всегда основывается на конструкционных требованиях к механизму, при этом выбором модели должен заниматься квалифицированный конструктор. Первое что нужно определить — какой тип передачи нужен, оптимальный размер механизма, рассчитать осевые нагрузи на валах и температурный режим работы.

От количества ступеней выбранного механизма напрямую зависит передаточное отношение. Одноступенчатые применяются для выполнения простых функций, обычно это червячный тип. Сейчас чаще можно встретить комбинированные типы передач, что позволяет значительно расширить функционал узла.

В качестве входных и выходных валов применяются стандартные прямые валы, изготовлены в форме тел вращения. От их качества напрямую зависит качество работы всего механизма, так как на них действуют множество внешних нагрузок различных типов.

Очень важно своевременно менять сальники и масло. Постоянные профилактические работы обеспечат стабильную работу и обезопасят от внезапных поломок. Для контроля уровня масла имеется специальное смотровое окно, что позволяет вовремя пополнять необходимый объем

Для контроля уровня масла имеется специальное смотровое окно, что позволяет вовремя пополнять необходимый объем.

В целом, самостоятельно рассчитать передаточное число, подобрать подходящую модель и провести замену (ремонт) редуктора не составит труда. Главное соблюдать рекомендации специалистов и технические инструкции, указанные производителем.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector