Как работает планетарный редуктор

Переключение передач в планетарной коробке

В планетарной коробке передач одни детали блока планетарных шестерен удерживаются на месте, другие с геометрическим замыканием (жестко) соединены с валом турбины гидротранс­форматора крутящего момента (выполняющим роль первичного вала механической планетарной передачи).

Удержание обеспечивается за счет тормозов, а соединение с геометрическим замыканием — за счет соединения многодисковых муфт.

Тормоза и многодисковые муфты в автома­тической коробке передач носят общее название органы переключения или элементы переключе­ния передач. Управление ими всегда осущест­вляется с помощью гидравлического давления.

Тормоза

При включении или затягивании тормозов в рамках переключения передачи солнечные ше­стерни, водило планетарной передачи или корон­ные шестерни блокируются (останавливаются), а при выключении или отпускании тормозов снова разблокируются и начинают движение,

В планетарных передачах могут использовать­ся ленточные или дисковые тормоза.

Ленточные тормоза

По окружности тормозного барабана располо­жена тормозная лента, имеющая с внутренней стороны фрикционную накладку.

У ленточного тормоза с одинарной обвивкой тормозной лентой тормозная лента обвита вокруг тормозного барабана один раз, а у ленточного тормоза с двойной обвивкой тормозной лен­той — два раза, благодаря чему усилие фиксации тормозного барабана при стягивании тормозной ленты в два раза выше, чем у ленточного тормоза с одинарной обвивкой. Ленточный тормоз авто­матической коробки передач Opel имеет двойную обвивку тормозной лентой. На рис. 21 «Ленточный тормоз с гидравлическим приводом механизма переключения передач автоматической коробки» изо­бражен ленточный тормоз с одинарной обвивкой тормозной лентой.

Дисковые тормоза

В современных автоматических коробках пере­дач используются только дисковые тормоза. На рис. 22 изображены основные детали дисково­го тормоза. Стальные диски (2) с наружными за­хватами вложены в стальную обойму (1) и имеют возможность перемещения в осевом направлении, фрикционные диски (3) с накладками соединены с блоком планетарных шестерен с помощью вну­треннего зубчатого венца. Стальная обойма жестко соединена с картером коробки передач (в ZF и Opel такой дисковый тормоз получил название «непод­вижной муфты»). По сравнению с ленточными тормозами дисковые тормоза могут передавать более высокие крутящие моменты и более точно регулироваться в отношении передачи усилия.

Муфты

Муфты автоматической коробки передач вы­полняют следующие функции:

  • Соединение вала турбины (первичный вал коробки передач) с определенными частями блока планетарных шестерен и отсоединение от них;
  • Передача усилия от частей одного блока пла­нетарных шестерен на части другого.

При установлении соединения с жестким гео­метрическим замыканием говорят, что муфта включается или соединяется. При разъединении соединения с геометриче­ским замыканием говорят, что муфта выключает­ся или разъединяется.

Как и дисковый тормоз (рис. 22) дисковая муфта состоит из стальных дисков с наружными захватами и фрикционных дисков с накладками и внутренним зубчатым венцом.

На рисунках 23 и 24 схематически изо­бражена муфта переднего хода автоматической коробки передач Audi и VW.

Название муфта переднего хода говорит о том, что эта муфта включается на всех передачах переднего хода. Только в нейтральном положе­нии и на передаче заднего хода муфта разъеди­нена.

Под системой автоматического переключения понимается гидравлический привод тормозов и муфт. Для затягивания и быстрого отпуска­ния ленточных тормозов используются круглые поршни в соответствующих цилиндрах (см. рису­нок 21).

Для обеспечения соединения дисковых тормо­зов и муфт поршни выполнены в виде колец, как показано на рисунках 23 и 24. Отпускание тормозов и разъединение муфт выполняется с помощью тарельчатых или спиральных пружин или с помощью нескольких небольших круглых витых пружин, расположенных по окружности муфты.

РЕКОМЕНДУЮ ЕЩЕ ПОЧИТАТЬ:

Планетарный механизм: назначение и устройство

В устройстве трансмиссии планетарный механизм позволяет изменять скорость, а также при необходимости направление вращения выходного вала. При этом в работе механизма можно выделить зависимость, что чем ниже будет скорость вращения выходного вала, тем большим будет на нем крутящий момент.

Итак, планетарная передача в основе имеет несколько вращающихся шестерен. Шестерни бывают следующих видов:

  • солнечная шестерня;
  • коронная шестерня
  • сателлиты;

Общий принцип работы планетарной передачи состоит в том, чтобы одна из шестерен (солнечная, коронная или водило) имела жесткую фиксацию. В этом случае элемент становится передающим.

В качестве примера можно представить, если закреплена коронная шестерня, тогда входной вал передает крутящий момент на солнечную шестерню. От солнечной шестерни идет передача момента дальше на сателлиты. Сателлиты проходят по коронной шестерне и вращают водило.

Водило, в свою очередь, передает крутящий момент на выходной вал коробки. По такому принципу построена планетарная коробка передач, куда также включены специальные системы торможения (тормоза) и блокировки элементов планетарного механизма.

С учетом особенностей конструкции можно выделить два типа планетарных передач:

  • в первом типе блокируется только один тип шестерен (одноступенчатая планетарная передача);
  • во втором возможна блокировка разных видов шестерен (многоступенчатая планетарка);

Также планетарный ряд может быть как с закрепленным элементом, так и с дифференциальным. Во втором случае ни один из элементов не зафиксирован жестко, что позволяет изменять вращение отдельно (посредством усилий, которые прикладываются к валам). Данный механизм позволяет вращаться наименее нагруженному валу с наибольшей скоростью.

Где используется планетарный механизм в автомобиле

Начнем с того, что планетарная передача используется в устройстве различных типов техники. Что касается автоиндустрии, чаще всего планетарный механизм лежит в основе дифференциала автомобиля.

Дифференциал стоит на каждой ведущей оси. Именно в дифференциале использован такой тип планетарной передачи, где ни один из элементов не имеет жесткой фиксации. Через входной вал момент передается на шестерню (не коронную, так как зубья расположены не вниз, а по сторонам). Шестерня передает момент на сателлиты, к которым присоединены 2 солнечные шестерни.

Идем далее. Планетарная передача также лежит в основе гидромеханической планетарной коробки передач АКПП. Если просто, общий принцип работы также основывается на вращении трех типов шестерен. При этом устройство намного сложнее, так как современная коробка передач требует от 5-и до 6-и передач для движения вперед. Вполне очевидно, что на одном планетарном механизме невозможно реализовать такую задачу.

В устройстве современной трансмиссии инженеры используют целый планетарный ряд АКПП. Планетарные ряды фактически являются связанными между собой несколькими планетарными механизмами. Благодаря такой конструкции можно гибко реализовать диапазон передаточного соотношения от 0.7:1 (для повышенных передач) и 4.5:1 (на пониженных). Передаточное соотношение, например, 0.7:1, означает, что на один оборот выходного вала входной вал делает 0.7 оборота.

Также в устройстве АКПП имеются специальные тормозные механизмы, которые нужны для переключения передач. Указанные механизмы (тормоза АКПП) имеют возможность притормозить вращение шестерен, а также полностью их заблокировать для подключения других элементов.

Принцип работы редукторов

Как же работает редуктор с солнечной шестерней?

Любой редуктор состоит из нескольких обязательных элементов. Очевидно, что в основе лежит шестерня солнечная, а так же имеется коронная шестерня (эпицикл), которая находится на периферии редуктора и как бы вмещает в себя остальные элементы, несколько шестерен-сателлитов, находящихся между солнечной шестерней и эпициклом, взаимодействующих с обеими. А так же закрепленное водило, на осях которого вращаются сателлиты.

Процесс работы передаточного цикла зависит от кинематической схемы привода. От типа кинематической схемы вращение может подводиться к каждому элементу редуктора и сниматься с любого из оставшихся. При этом третья составная должна быть заторможена. Изменяя схему подвода и снятия крутящего момента внутри данной конкретной планетарной передачи, мы имеем возможность получить различные передаточные числа и направления вращения.

Конечно, большинство людей, покупая технику в дом, совсем не интересуются в деталях составными частями, еще меньше их интересует, что же именно в их технике делает шестерня солнечная, и это правильно, так как невозможно знать и понимать все. Но, если вы покупаете байки, работающие на планетарной втулке или мотор-колесе, стоит понимать уровень сложности механизма, который помогает приводить в движение ваш транспорт. Как следствие, оценивать проблемы технического характера, которые могут возникнуть при поломке такого устройства.

При всем том, что технически сложные приспособления при поломках непросто восстановить, а самостоятельно часто невозможно, они очень облегчают жизнь велолюбителям. Так планетарная втулка и звездочка на велосипед могут выполнять одни и те же функции, однако, ясно, что для не спортсменов велосипед с планетарной втулкой, основанной на солнечной передаче, намного удобнее. Тем более, если речь идет об электровелосипедах.

Многие выбирают именно этот тип транспорта, специально подыскивают оборудование для переделки обычных велосипедов в электровелосипеды.

Очевидно, что человек, который сам изготавливает электровелосипед, в общих чертах представляет, как работает мотор-колесо, и на каких принципах основано движение велосипеда с электрической тягой, в отличие от механического принципа движения велосипеда.

Если вы планируете покупать или делать своими руками электровелосипед, то принцип работы планетарного редуктора будет далеко не лишним знанием, которое поможет вам полнее представлять, что за технику вы получите в конце концов.

Процедура механизации производственной и другой деятельности существенно повысила поставленные задачи. Довольно большое распространение получили механизмы, предназначенные для передачи вращения и распределения создаваемого усилия. Существует довольно большое количество различных редукторов, все они характеризуются своими определенными эксплуатационными характеристиками. Примером можно назвать планетарный редуктор, устройство которого имеет довольно большое количество различных особенностей. Рассмотрим подобный механизм подробнее.

[править] Устройство

Планетарная передача

Основные элементы планетарной передачи:

  • Солнечная шестерня (англ. sun gear) — находится в центре.
  • Водило (англ. carrier unit) — жёстко фиксирует друг относительно друга оси нескольких планетарных шестерён («сателлитов») одинакового размера (англ. planetary gears), находящихся в зацеплении с солнечной шестерней.
  • Кольцевая шестерня (англ. ring gear) — внешнее зубчатое колесо, имеющее внутреннее зацепление с планетарными шестернями.

При использовании планетарной передачи в качестве редуктора один из элементов фиксируется неподвижно, второй — используется как ведущий (замыкается на звезду, приводимую цепью), а третий — в качестве ведомого (замыкается на корпус втулки). Соединение элементов осуществляется с помощью собачек или роллерного сцепления, уменьшающего шумность. Таким образом, передаточное отношение будет зависеть от количества зубьев каждого компонента, а также того, какой элемент закреплён. Увеличивая количество планетарных передач, можно увеличивать количество скоростей у втулки.

3-скоростная втулка

Взрыв-схема 3-скоростной планетарной втулки (вид сзади): 3 — водило с сателлитами, 4 — кольцевая шестерня, 6 — ось и солнечная шестерня, 7 — привод с шлицами для звездочки

Принцип работы 3-скоростной планетарной втулки, включающей в себя одну планетарную передачу:

  • Солнечная шестерня — это ось, она закреплена неподвижно на раме.
  • Первая передача (отношение 0.733). Ведомая звезда с помощью привода соединена собачками с кольцевой шестерней. Водило соединено собачками с корпусом втулки. Кольцевая шестерня вращает водило через сателлиты, при этом водило (и корпус втулки) вращается медленнее, чем кольцевая шестерня (и звезда).
  • Вторая передача (отношение 1.0). Под действием исполнительного механизма муфта, сжимая возвратную пружину, выдвигает собачки на кольцевой шестерне, и она зацепляется с корпусом втулки. Вращение передается непосредственно с звезды на кольцевую шестерню и далее на корпус втулки — прямая передача. Водило вращается с той же скоростью, что и на первой передаче, но корпус втулки вращается быстрее, поэтому собачки водила стрекочут по корпусу и не оказывают влияния на работу механизма.
  • Третья передача (отношение 1.364). Исполнительный механизм толкает муфту дальше, она входит своими шлицами в зацепление с водилом. Тем самым, водило соединяется с ведомой звездой. Собачки на кольцевой шестерне по-прежнему зацеплены с корпусом втулки, но водило теперь вращается в противоположную сторону, ускоряя вращение корпуса втулки по сравнению с ведомой звездой. Собачки стрекочут между водилом и корпусом, а также между приводом и кольцевой шестерней.

Многоскоростные втулки

Взрыв-схема 8-скоростной планетарной втулки (вид сзади): 3 — сдвоенная планетарная передача в сборе, 4 — водило в сборе, 5 — кольцевая шестерня, 8 — ось и солнечная шестерня в сборе, 9 — муфта, 10 — возвратная пружина, 11 — привод с шлицами для звездочки

При увеличении количества планетарных передач, включаемых в различных сочетаниях, можно увеличивать число передаточных отношений втулки (с соответствующим увеличением сложности и цены).

8-скоростная втулка имеет две планетарных передачи. Первая из них (подключается муфтой на 1-4 скоростях) — замедляет вращение втулки на фиксированную величину. Она состоит из 1 кольцевой шестерни, 1 солнечной шестерни и 1 набора сателлитов. Вторая планетарная передача ускоряет движение втулки. Она состоит из 1 кольцевой шестерни, 3 солнечных шестерней (далее — СШ № 2, 3, 4) и 3 наборов сателлитов. При переключении передач, различные солнечные шестерни подключаются собачками, расположенными на оси, и меняют передаточное отношение второй планетарной передачи. 5-я передача втулки — прямая, вращение передается с звездочки на корпус без преобразования потока мощности.

Использование планетарных передач (далее — ПП1 и ПП2) втулки на различных скоростях:

  1. ПП1 замедляет, ПП2 не используется.
  2. ПП1 замедляет, ПП2 ускоряет с СШ2.
  3. ПП1 замедляет, ПП2 ускоряет с СШ3.
  4. ПП1 замедляет, ПП2 ускоряет с СШ4.
  5. Прямая передача
  6. ПП1 не используется, ПП2 ускоряет с СШ2.
  7. ПП1 не используется, ПП2 ускоряет с СШ3.
  8. ПП1 не используется, ПП2 ускоряет с СШ4.

Взрыв-схема 11-скоростной планетарной втулки (вид сзади): 7 — водило № 3 в сборе, 8 — солнечная шестерня № 4, 10 — водило № 2 в сборе, 11 — солнечная шестерня № 2, 12 — водило № 1 в сборе, 14 — ось и солнечная шестерня № 1 в сборе, 15 — муфта, 17 — привод с шлицами для звёздочки

юбилей Sturmey-Archer

11-скоростная втулка имеет уже 3 планетарных передачи. Она не имеет прямой передачи, поток мощности преобразуется минимум 1 раз на всех передачах.

Планетарные редукторы в машиностроении

Широкое распространение редуктора, которые имеют устройство данного типа получили в ведущих мостах автомобилей и в автоматических коробках переключения передач. Колесный редуктор можно встретить в мостах таких автомобилей, как: МАЗ, Икарус, в некоторых троллейбусах, тракторах Т-150К, К-700. Этот колесный редуктор в мостах передает крутящий момент к ступицам колес от полуосей. Также они распространены в передаче бортового типа. Такое применение в бортовой передаче позволило существенно уменьшить как расчетный, так и практический диаметр основной передачи. Уменьшение диаметра отразилось повышенным просветом автомобиля и как следствие более высокой проходимостью. Использование планетарных коробок переключения передач набирает все большую популярность. Передаточное отношение устройства будет вытекать из расчета отношения числа зубьев на центральной шестерни к числу зубьев на коронной шестерне. Интересным моментом является расторможение коронной шестерни в коробке. В этом случае передаточное число равняется 1.

Мы сами пробовали этот кусок, и мы должны признать, что функция является совершенным. Изменение происходит мгновенно и очень заметно, поэтому нет необходимости опасаться, что велосипедист спусков проблемы с чрезмерной частотой. В городском движении, это решение с диапазоном 124% и вес 980 г идеала. Таким образом, общая протяженность в том числе кассеты 578%, а вес дискового тормоза версии на 970 граммов делает его одним из самых легких фаворитов. Но уменьшить внутренний механизм, это снова добавляет кассету и переключатель, так что вновь возрастает.

Мотор-редукторы планетарного типа

Это устройство предназначено для использования в роли привода в горизонтальном либо вертикальном положении. Мотор-редукторы исполнены из нескольких модулей. Такая кинематическая схема, включающая сразу мотор и устройство планетарного редуктора, имеет целый ряд значительных преимуществ и позволяет выполнять следующие задачи:

Цена составляет около восьми тысяч стандарта. Нет передач, не сдвигая с небольшой задержкой и ограниченным числом передач. Эта система работает, потому что, как вариатор, так что внутренний механизм работает на основе перемещения больших шаров их орбит, и таким образом позволяет полностью плавное изменение передач.

Силовая передача обеспечивается благодаря упруго-гидро-динамического контента, так что не должно быть никакого существенного трения. Благодаря этому предложению бесчисленные вариации из-за непрерывной передачи признака сдвига на основе вариатора. Интересный вариант представляет собой вариант, где заряд может быть объединен с любым валиком или дисковыми тормозами или выбегом звездочкой. Несмотря на все производитель похвалы должен, за свои собственные испытания, чтобы понять, что переключение передач действительно гладко, но когда сила горки предложение сцепление при переключении передач в общей сложности значительного сопротивления, тем тяжелее райер занимает педаль, тем сильнее сопротивление при трении, что там на самом деле там не должно быть, это чувствует.

  1. Вырабатывание высоких мощностей при невысоких габаритах;
  2. Большой коэффициент полезного действия;
  3. Масса в три раза меньше аналогов;
  4. Использование для специализированных установок;
  5. Расчет делать легче, чем у других редукторов;
  6. Невысокие затраты на обслуживание.

Расчет планетарного устройства

Обсудив в статье уже множество моментов по этому редуктору, стоит перейти и к основным моментам по его расчету перед проектированием. Расчет редуктора производится следующим образом:

Но мы не тестируем вы приносите эту плату отдельно. Его расширение в основном в области электрических велосипедов, возможно, дорогой «имидж» машина. Цена около девяти тысяч принадлежит благодаря конкурентоспособной продукции обратно к стандарту. Если гонщик решит сделать это, он должен рассчитывать на перемещение части веса более назад, что может быть показано двумя способами. Во-первых, он тянет заднее колесо сильнее в воздух, и, если его неравенство в области местности ударит, более тяжелый прикладом будет менее управляемым из-за инерции.

  1. Определяем число передаточных ступеней;
  2. Расчет сателлитов и числа зубьев;
  3. Выбор материала шестерен;
  4. Определяем межосевое расстояние;
  5. Проверочный расчет;
  6. Расчет сил;
  7. Выбор подшипников;
  8. Определение толщины колес;
  9. Вычисление осей шестеренок.

Передаточное отношение

Передаточное отношение в планетарном редукторе визуальным способом определить сложно, так как существуют разные способы приводить в движение систему. В планетарной передаче, одна деталь фиксируется, а другие выступают как ведущая и ведомая. Передаточное число зависит от зубчиков всех шестерёнок, от их количества, и от закреплённого элемента.

Передаточные отношения бывают:

  • положительные – когда оба зубчатых колеса с одним направлением;
  • отрицательные – если шестерёнки движутся в разных направлениях.

Если неподвижно водило, то передаточное число равно S/А, где S – центральное колесо, A – количество зубьев шестерёнки.

При блокировании кольцевой шестерёнки, к водилу подаётся мощность, и тогда ПО солнечной шестерёнки менее 1 и будет выглядеть как 1+A/S.

При закреплении кольцевой шестерёнки, а прохождении мощности через центральное колесо, ПО равно 1/(1 + A/S). Оно является наибольшим числом, которое возможно получить при планетарной передаче.

Простые и сложные устройства

Как уже отмечалось выше, схема планетарного механизма всегда включает водило и два центральных колеса. Сателлитов может быть сколько угодно. Это, так называемое, простое или элементарное устройство. В таких механизмах конструкции могут быть такими : «СВС», «СВЭ», «ЭВЭ», где:

  • С — солнце.
  • В — водило.
  • Э — эпицентр.

Каждый такой набор колес + сателлиты называется планетарным рядом. При этом все колеса должны вращаться в одной плоскости. Простые механизмы бывают одно- и двухрядными. В различных технических приборах и машинах они используются редко. Примером может послужить планетарный механизм велосипеда. По такому принципу работает втулка, благодаря которой осуществляется движение. 

Гораздо чаще можно встретить сложные зубчатые планетарные механизмы. Их схемы могут быть самыми разными, что зависит от того, для чего предназначается та или иная конструкция. Как правило, сложные механизмы состоят из нескольких простых, созданных по общему правилу для планетарной передачи. Такие сложные системы бывают двух-, трех- или четырехрядные. Теоретически можно создавать конструкции и с большим числом рядов, но на практике такое не встречается.

Планетарный редуктор и планетарная передача — теория

Рассмотрен принцип действия планетарной передачи, указаны преимущества и недостатки применения планетарных редукторов. Приведена схема планетарной передачи и расчет передаточного отношения редуктора.

Планетарный редуктор и планетарная передача

Зубчатая передача

Зубчатая передача

Устройство планетарного механизма основано на вращении тел зубчатой передачи, которые непосредственно взаимодействуют с главным двигателем. Именно такое соединение и служит для передачи силы от редуктора до других механизмов с изменением скорости их вращения. Таким образом происходит передача крутящего момента от двигателя на колеса через основную ось, главную шестерню и сателлиты. Вообще устройство зубчатой передачи достаточно простое и понятное. Вот, что входит в конструкцию обычной передачи. Для соединения с главной передачей имеются две зубчатые шестерни, таким образом происходит зацепление. При движении происходит передача скорости вращения с главной шестерни на ведомую за счет зацепов. Наименьшее колесо в конструкции называется шестерней, а наибольшее будет главным и ведомым колесом.

Планетарный механизм

Схема планетарной передачи

Редукторы с зубчатой передачей, колеса которых имеют движущиеся оси, называются планетарными. Внутри расположены зубчатые колеса, перемещающиеся на своих, геометрических осях. Такие шестерни получили название сателлиты, потому что вся конструкция очень похожа на солнечную систему. Главные шестерни называются центральными колесами. Сателлиты крепятся на своих осях и вращаются вокруг главной передачи при помощи водила, которое движется так же, как и центральное колесо, вокруг главной оси. Центральное колесо остается неподвижным, а другие шестерни можно заблокировать или разблокировать полностью.

Если центральное колесо неподвижно, то второе постоянно движется. Ведущим здесь является вал подвижного колеса, а ведомым-водила. Если разблокировать все зубчатые колеса вместе с ведомым, то такая передача будет дифференциальной. Выделяют два основных и ведущих звена и одно ведомое.

При подробном рассмотрении простейшей планетарной передачи мы видим: ведущее колесо или водило, ведомое с тремя сателлитами, вращающимися вокруг центральной оси и центральное, неподвижное колесо.

Передаточное отношение

Чтобы рассчитать передаточное отношение редуктора, необходимо заметить определенное количество неподвижных звеньев(1,2,3 и Н) и условно задать им поступательное вращение со скоростью wH, равное скорости вращения водила, но с обратным знаком. Скорость зацепления зубчатых колес не изменяется. Таким образом скорость + wH +(- wH)=0, то есть водило будет остановлено. Если водило неподвижно, тогда планетарная передача превращается в зубчатую, где все колеса неподвижны. Сателлиты не учитываются. Их вращение будет положительным при одинаковом вращении шестерен, а отрицательным при противоположном вращении:i=(? 1 -? H)/(? 3 -? H)=-(z 3 /z 1), где z 1 и z. Если колесо 3 закреплено неподвижно, то угловая скорость водила Н = 1 /[1+(z 3 /z 1)], а передаточное отношение i =1+z 3 /z 1.

Как обычно, для работы редуктора с одноступенчатой передачей при больших нагрузках становится мало, поэтому стали изготавливать двух и трех ступенчатые редукторы, а иногда и четырех ступенчатые. Чаще всего применяется двухступенчатая передача.

Двухступенчатая планетарная передача.

Схема двухступенчатой планетарной передачи

Для других редукторов передаточное отношение высчитывается таким же способом. Для двухступенчатого редуктора, где центральное колесо 1—ведущее, водило Н2 — ведомое, центральные колеса 3 и 4 закреплены в корпусе, передаточное отношение i=1+z 2 z 3 /z 1 z 4.

При всех достоинствах планетарного редуктора, нужно знать, что при сильном вращении шестерни, КПД всего механизма сильно ухудшается.

Нагрузка от центрального колёса водила восприниматься всеми шестеренками (1-6) одинаково, при этом их размеры значительно меньше, чем у обычной передачи. Следовательно, главными преимуществами планетарной передачи являются большая скорость вращения, небольшой вес и компактность. Дифференциальные передачи используются в автомобиле для разложения движения, а так же в различных станках. К минусам такой передачи относится ее трудоемкое изготовление и сложная сборка на предприятии. Такие редукторы благодаря своим преимуществам находят свое применение во многих отраслях производства: в машиностроении, приборах, станкостроении, в транспорте.

Использован материал из книги «Детали машин» Гузенков П.Г.

Так же по теме предлагаем статью «Планетарный редуктор» с примером расчета передаточного отношения и анимированными схемами ступеней планетарного редуктора.

Применение

Сегодня электродвигатель с планетарным редуктором получили весьма широкое распространение, могут применяться в самых различных случаях. Область применения во многом зависит от конструктивных особенностей устройства и его характеристик. Выделяют следующие варианты исполнения:

  1. Цилиндрические. Это связано с тем, что конструктивные особенности позволяют обеспечить КПД около 95%. Назначение редуктора с планетарной передачей заключается в передаче достаточно большого усилия между параллельными и соосным валами. Передача вращения осуществляется за счет прямозубых, косозубых и шевронных колес. Коэффициент может варьировать в пределе от 1,5 до 600. Достоинством подобного варианта исполнения можно также назвать компактные размеры, а также высокую степень защиты от воздействия окружающей среды.
  2. Конические сегодня также встречаются довольно часто. Конструктивной особенностью можно назвать то, что шестерни имеют коническую форму. За счет подобной формы обеспечивается плавность сцепки, а также высокую степень устойчивости к нагрузкам. В алы в данном случае могут располагаться вертикально или горизонтально.
  3. Могут применяться и волновые устройства. Они характеризуются тем, что имеют гибкое промежуточное число. Основными конструктивными элементами можно назвать эксцентрики и кулачки, которые обеспечивают растяжение гибкого колеса. Подобный вариант исполнения характеризуется высоким передаточным числом, плавностью хода и повышенной степенью герметичности. Выделяют несколько различных разновидностей этого механизма, к примеру, могут применяться различные типы подшипников.

Несмотря на достаточно сложную конструкцию, она получила весьма широкое распространение. Примером можно назвать машиностроительную область, станкостроение и производство различных механизмов. Примером можно назвать автомобильную коробку передач, которая предназначена для передачи вращения и изменения предаваемого усилия или скорости.

Наиболее важными параметрами выбора можно назвать следующие показатели:

Тип передачи, которая применяется для передачи вращения.
Максимально допустимая осевая и консольная нагрузка. На момент эксплуатации редуктора нагрузка, возникающая на момент работы распределяется самым различным образом.
Имеет значение и размер редуктора. Слишком большой показатель определяет отсутствие возможности установки в тех или иных условиях

Однако, нужно уделить внимание тому моменту, что увеличение мощности достигается исключительно за счет увеличения размеров устройства. Поэтому приходится подбирать более оптимальный вариант исполнения.
Диапазон температур, при которых механизм может применяться

Тип применяемого материала при изготовлении корпуса и основных элементов определяет то, в каких условиях устройство может эксплуатироваться. Слишком высокая температура становится причиной повышения пластичности и снижения твердости поверхности, за счет чего есть вероятность деформации и износа изделия. Для обеспечения охлаждения проводится добавление масла. Не все варианты исполнения могут применяться для длительной работы, некоторые могут эксплуатироваться только периодически.
Популярность производителя также имеет значение. Некоторые заводы характеризуются тем, что производят качественные и долговечные механизмы.

Все наиболее важные параметры указываются в инструкции по эксплуатации, что существенно упрощает процесс выбора подходящего варианта исполнения.

История возникновения планетарных втулок для велосипеда

Перед как попасть на велосипеды, планетарные втулки использовались на трёхколёсных велосипедах. Патент на планетарную велосипедную втулку датируется серединой 1880-х годов. Первый патент на компактную планетарную втулку был предоставлен в 1895 году американским механиком Сьюардом Томасом Джонсоном из Ноблсвилла в США. В этой втулке было всего две скорости. Она не была коммерчески успешной.

В 1896 Уильям Рейли из Салфорда в Англии запатентовал двухскоростную втулку. Она начала выпускаться в 1898 году под названием «втулка». Она стала большим достижением в велосипедной индустрии и выпускалась ещё не одно десятилетие. Многим понравилась практичность компактной планетарной втулки.

В 1902 году Рейли сконструировал 3-скоростную планетарную втулку. Он прекратил сотрудничество с и отдал им интеллектуальные права на планетарные втулки. Чтобы обойти проблему с патентом, коллега Рейли — Джеймс Арчер приобрёл патент на 3-скоростную втулку. Тем временем известный английский журналист и изобретатель Генри Стармей также изобрёл свою 3-скоростную втулку. В 1903 году Френк Боуден, директор велосипедной компании Raleigh, создал Three-Speed Gear Syndicate и приобрёл права на обе 3-скоростные втулки Reilly/Archer и Sturmey. Втулка Рейли выпускалась как первая 3-скоростная втулка Sturmey Archer.

Двухскоростная планетарная втулка Fichtel Sachs Torpedo, выпускавшаяся в 1904 — 1954 годах.

В 1902 году Майкл Педерсен, выпускавший велосипеды Dursley Pedersen, запатентовал 3-скоростную втулку. Она начала выпускаться в 1903 году. Эта втулка была основана на принципе «контрпривода» с необычной планетарной передачей, в которой вместо зубчатого колеса использовалась вторая солнечная шестерня. В 1904 году компания Fichtel & Sachs (Германия, Швайнфурт) выпустила втулку под лицензией Wanderer. Таким образом до 1909 года на английском рынке было доступно 14 разных 3-скоростных планетарных втулок.

К 1930-му году планетарные втулки использовались на велосипедах по всему миру. Они были особенно популярны в Великобритании, Нидерландах, немецкоговорящих странах и Скандинавии. Начиная с 1970-х годов они утратили популярность в англоговорящих странах. Но во многих странах северной Европы, где велосипеды постоянно использовались в качестве повседневного транспорта, а не только для спорта и отдыха, планетарные втулки всё ещё широко использовались. Появились более дешёвые и мощные (но менее надёжные) классические переключатели скоростей, предлагавшие широкий диапазон передач.

В 1987 году Sturmey-Archer производили только 3- и 5-скоростные втулки, Fichtel & Sachs и Shimano — только 2- и 3-скоростные втулки. В том же году была опубликована первая книга (исключая инструкции по техническому обслуживанию), посвящённая 80 годам истории планетарных втулок. С тех пор наблюдается медленный но неуклонный рост интереса к планетарным втулкам, что нашло отражении в увеличении доступного диапазона втулок.

В 1995 году Sachs представила Elan, первую планетарную втулку с 12 скоростями и общим передаточным диапазоном 339%. Тремя годами позже Rohloff вышла на рынок с планетарной втулкой на 14 передач Speedhub 500/14 с общим диапазоном 526%, сравнимым с 27 скоростными классическими системами переключения передач. Она была достаточно надёжная и лёгкая. Это единственная втулка, которая может устанавливаться на горные велосипеды наравне с дерайлерами. В 2007 году NuVinci запустила в производство бесступенчатую ∞-скоростную втулку (велосипедный вариатор), предназначенную для ежедневных поездок на работу, с общим диапазоном приблизительно 350%.

На 2008 год Sturmey-Archer производила 3-, 5- и 8-скоростные втулки, SRAM (наследник Fichtel & Sachs) производила 3-, 5-, 7- и 9-скоростные, Shimano производила 3-, 7- и 8-скоростные. В феврале 2010 года Shimano официально представила 11-скоростную модель Shimano Alfine 700.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector