Принцип работы клапана вентиляции картера

Устройство и принцип работы системы вентиляции картера

Данная система состоит из множества узлов, основными из которых являются: специальный клапан с редукционным приводом, система различных шлангов и трубок, клапан для создания принудительной вентиляции и устройство, предназначенное для маслоотделения.

Самым основным элементом можно назвать устройство для маслоотделения. Оно располагается в самой верхней части картера и представляет собой полый короб, в котором одна стенка выполнена в виде решетки, которая согнута на 30 градусов. В нижней части картера устанавливается маслоотражатель. Последний нужен для того, чтобы отсеивать масло от газов, которое тоже будет стремиться попасть в систему вентиляции. Вверху маслоотделителя устанавливается штуцер, идущий в трубопровод системы вентиляции.

Далее идет самый основной компонент системы – это клапан принудительной вентиляции. Сам клапан имеет в своем составе два цилиндра и пружину с поршнем внутри. Так как принудительная вентиляция может происходить только при создании определенного разрежения внутри системы, то и положение поршня должно быть разным. Поэтому в клапане предусмотрено три положения, которые определяют основные режимы работы клапана.

  • Положение А. Источник, создающий разряжение имеет очень низкое давление. Соответственно, такое давление недопустимо для работы клапана и он под действием появившейся силы, преодолевая действие пружины, закрывается.
  • Положение Б. В этом случае разряжение довольно высокое, соответственно и давление газов тоже становится большим. Такой режим работы становится не нормальным, а соответственно и клапан под действием пружины также запирается. Такое бывает при повышении оборотов двигателя или применении турбокомпрессоров для ускоренной закачки больших объемов воздуха в цилиндры.
  • Положение А и Б. Для создания такого режима, источник разряжение должен создать оптимальное давление для жесткости пружины клапана. В этом случае, она смещает поршень в промежуточное положение и, таким образом, открывает клапан.

Основой для работы клапана вентиляции картера является обыкновенная разность между давлением за дроссельной заслонкой и после нее. Соответственно, перепад давлений может замеряться и возле турбокомпрессора. Однако, если с обычным мотором все понятно, то с турбированным возникают определенные трудности. Дело в том, что разность давлений в этом слишком высока, что потребует дополнительной регулировки. Для этой цели конструкторы разработали специальный редукционный клапан.

Редукционный клапан в своем составе имеет: диафрагму из специальной маслостойкой резины, колодец из металла, в котором имеются два отверстия, и пружину. Если давление, которое создается у источника разряжения, находится на нормальном уровне, то пружина распрямляется и поднимает диафрагму, открывая, при этом, клапан основного отверстия, давая проход для картерных газов.

В том случае, если же давление будет слишком низким, то диафрагма будет смещаться вниз и заставит пружину сжаться. Клапан основного клапана закроется, но при этом, откроется клапан второго отверстия с меньшим сечением. Картерные газы будут проходить именно через него.

Для обеспечения наиболее плавного хода диафрагмы применяется третий клапан, который установлен сверху корпуса клапана. Таким образом, достигается регулировка давления, воспринимаемого пружинами системы вентиляции.

Редукционный клапан помогает производить вентиляцию не только картера, но и блока цилиндров в целом. Это связано с его возможностью использоваться при повышенных нагрузках двигателя, когда давление увеличивается прямопропорционально.

Прибор для измерения картерных газов

Монометром можно измерить давление, нормальные показатели не должны превышать 60 миллиметров ртутного столба. Вначале убеждаются, нет ли засора в трубке сапуна. Также проверяют уровень масла в двигателе. Модель измерительного прибора подбирают, исходя из мощности и типа двигателя

Важно убедиться, что аппарат подходит по диаметру калиброванного отверстия

В машинах с вентиляционной системой закрытого типа необходимо отсоединить трубку сапуна. На канал внутри впускного коллектора ставят заглушку. Манометр присоединяют к кончику трубки. К самому аппарату подключают датчик давления.

Двигатель должен поработать с нагрузкой и с частотой вращения, при которой достигается номинальная мощность. Нужно дождаться, пока выровняются показания манометра.

После стабилизации прибора, записывают результаты. Затем можно снять прибор, вытащить заглушку и заново подсоединить трубку.

Важно учитывать, что на двух моторах с одинаковым рабочим объемом расход газов может отличаться. Такая ситуация возможна, когда у рассматриваемые модели дифференцируются по показателям работы на единицу времени и вращающему моменту

Принцип действия

Когда смесь топлива и воздуха сгорает в камере при очень высоких температурах, выделяется азот. Вместе с кислородом он может образовывать опасные вещества, которые губительным образом влияют на экологию. Это оксиды азота. При определенном условии в камере сгорания мотора температура горения больше стандартной, из-за чего объем выбросов оксидов азота значительно увеличивается.


Большая часть пытается прорваться в нижнюю часть блока двигателя. Для того чтобы давление не вырастало до критического уровня, его нужно стравливать. До тех пор, пока на моторах не была внедрена система рециркуляции, газы, как уже было замечено, выводились через сапун в картере двигателя. Давайте рассмотрим, как работает клапан картерных газов. Принцип работы очень простой. Он основан на эффекте разряжения во впускном коллекторе. За счет этого, посредством вакуумного преобразователя, вал клапана двигается, тем самым открывая устройство. В современных автомобилях применяются два типа устройств. Это механические и электронные системы. В свою очередь, электронные делятся еще на два типа – дискретные и линейные.


В корпусе вакуумной диафрагмы на блоке цилиндров имеется вакуумный патрубок. Он присоединяется к карбюратору либо к дроссельному углу. В зависимости от того, какое разряжение возникает во впускном коллекторе, шторка диафрагмы в процессе открытия давит на рычаг бесступенчатого переключения. В результате генерируется специальный сигнал для открытия мембраны электронного клапана. Когда уровень сигнала растет, диафрагма начинает двигаться вверх, преодолевая силу пружины и двигая плунжер. За счет этого в клапане получатся отверстие. Газы могут попасть во впускной коллектор. Если мотор работает на холостых оборотах или же когда уровень разряжения в коллекторе небольшой, то плунжер закрывается. Газы в коллектор поступать не будут.

Принцип работы клапана вентиляции картерных газов

Во-первых, давайте обсудим его функцию, чтобы вы лучше поняли причины возникновения симптомов. Понимание этого поможет вам лучше понять систему при ее проверке и тестировании.

Вплоть до конца 1950-х годов автомобильные двигатели выпускали «взрывные» газы – несгоревшее топливо – для предотвращения повреждения двигателя. Проблема была в том, что эти газы наносили вред окружающей среде, что очень плохо.

Когда двигатель вашего автомобиля работает, топливовоздушная смесь поступает в каждый цилиндр. Сотни мощных взрывов происходят, чтобы высвободить энергию топлива, производя высокотоксичные и вредные газы. После каждого процесса сгорания выпускной клапан направляет эти газы в выхлопную систему, где каталитический нейтрализатор превращает их в гораздо менее токсичные пары перед выпуском их в атмосферу.

Тем не менее, небольшое количество газа в камерах сгорания попадает в картер (блок двигателя) посредством утечки давления между поршневыми кольцами и стенкой цилиндра.

Оставленные сами по себе, эти пары и будут разрушать ваш двигатель. Продувочные газы содержат углеводороды (несгоревшее топливо), угарный газ (частично сгоревшее топливо), твердые частицы, воду, серу и кислоту. Вместе эти вещества разъедают любой металлический компонент двигателя, к которому они прикасаются, разбавляют моторное масло, накапливают вредный осадок, ускоряющий износ деталей, и закупоривают небольшие проходы и шланги.

В 1961 году для решения этой проблемы была введена система PCV. Эта простая система контроля выхлопных газов использует вакуум двигателя, чтобы вытягивать продувочные газы из картера, проталкивая их вниз по впускному коллектору и обратно в камеры сгорания, где они возвращаются.

Тем не менее, система PCV выйдет из строя при плохом обслуживании системы двигателя.

Последствия неисправной вентиляции картера

Последствия высокого давления в картерном пространстве:

  1. Нарушение резиновых уплотнений коленчатого и распределительного вала. Через выдавленные сальники двигатель будет терять масло. Если вовремя не заметить резкое снижение уровня, масляное голодание может привести к износу трущихся пар, провороту вкладышей.
  2. Поломка турбины. После смазывания и охлаждения деталей турбокомпрессора масло самотеком должно сливаться в поддон. Если в картерном пространстве будет подпор газов (своеобразная пробка), объем моторного масла, прокачиваемого через турбину, резко снизится. Из-за ухудшения теплоотвода масло начнет коксоваться внутри каналов и на раскаленных трущихся парах. Последствие – задиры на вкладышах и валу турбины, что равнозначно глубокой реставрации либо замене картриджа/турбокомпрессора в сборе.
  3. Выдавливание щупа и забрызгивание маслом подкапотного пространства. В некоторых случаях щуп вылетает с такой силой, что оставляет заметную вмятину на капоте. В таком случае только мойкой подкапотного пространства не отделаться.

Устройство системы очистки картерных газов в современных автомобилях

Картерные газы, в то время, когда проходят через несложную систему специальных клапанов и трубок, на выходе поступают назад в камеры сгорания, где происходит их догорание.


Схема системи очистки картерных газов с циклонным маслоотделителем (1 – трубопровод подачи картерных газов; 2 – трубопровод забора воздуха; 3 – мембрана; 4 – пружина сжатия; а – открытое положение клапана; б – закрытое положение клапана)

Вначале газы выходят в маслоотделитель, который напрямую крепится к этому отверстию. Вся сеть прокладок и перегородок маслоотделителя предназначена для выделения из газовой смеси масляных капель, которые возвращаются в поддон. Такая функция полезна тем, что уменьшается расход масла. В разных моделях маслоотделитель либо встроен в мотор, либо помещается под крышкой клапанов и составляет отдельный узел.

К маслоотделителю прикручивается пластмассовый патрубок, через который газы, уже без масла, поступают в резиновый тройник. Внутри тройника находится клапан или его еще называют «блиттер». Это основной рабочий клапан.

Вентиляция картера двигателя

Вентиляция картера предназначена для удаления картерных газов, образующихся в результате прорыва продуктов сгорания топлива через зазоры между гильзой и поршневыми кольцами и их взаимодействия с парами масла.

В газах содержатся загрязняющие масло серистые соединения и пары воды, которые образуют серную и сернистую кислоты, значительно ухудшающие качество масла. Пары воды вызывают вспенивание масла и образование эмульсии, что затрудняет поступление масла к трущимся поверхностям. Прорвавшиеся в картер газы повышают в нем давление, что может вызвать утечку масла через уплотнения картерного пространства.

Недопустимо также проникновение газов под капот двигателя, а затем в кузов и кабину автомобиля, так как содержащиеся в газах вредные вещества опасны для пассажиров и водителя. Отсос картерных газов уменьшает старение масла, а также, создавая разрежение в поддоне, предотвращает возможность утечки масла через уплотнения.

В автомобильных двигателях применяется вентиляция картера двух типов:

  • открытая – с отводом картерных газов в окружающую среду;
  • закрытая – с отсасыванием газов во впускную систему двигателя.

Открытая вентиляция (рис. 1) осуществляется под действием разрежения, возникающего в газоотводящей трубке вследствие относительного перемещения воздуха при движении автомобиля. Чтобы вместе с картерными газами не уносились частицы масла применяется специальный сапун лабиринтного типа, на стенках которого масляные капли оседают и стекают в поддон.

Недостатком открытой системы вентиляции картера является ее низкая эффективность, а также отравление окружающей среды вредными для здоровья человека и живой природы веществами.

В закрытых системах газы могут отводиться в воздухоочиститель до карбюратора или непосредственно во впускной трубопровод. Отвод газа через воздухоочиститель не создает требуемой интенсивности отсоса при минимальных частотах вращения коленчатого вала и полной нагрузке.
Кроме того, проход картерных газов через карбюратор вызывает осмоление его каналов, жиклеров и подвижных деталей. Поэтому более предпочтительной является система с отсосом газов непосредственно во впускной трубопровод двигателя, в котором всегда имеется разрежение.

Система вентиляции, показанная на рис. 2, работает следующим образом: под действием разрежения во впускном трубопроводе 10 картерные газы поднимаются вверх и через угольник 9 и шланг 5 попадают в корпус маслоотделителя, закрытый крышкой 1.
Между крышкой и корпусом находится резиновая мембрана 2, поджимаемая пружиной 3 к корпусу. Оседающие на дне корпуса маслоотделителя частицы масла по трубке 6 сливаются в картер двигателя.

С помощью мембраны 2, которая находится с одной стороны, под давлением атмосферного воздуха, а с другой – под давлением картерных газов и пружины, в картере поддерживается избыточное давление.

На рис. 3 показана схема вентиляции картера карбюраторного двигателя автомобилей марки «ВАЗ».
Здесь картерные газы отсасываются через маслоотделитель 7 и шланг 6 в вытяжной коллектор 4 воздушного фильтра 3. Из вытяжного коллектора на холостом ходу и при малых нагрузках двигателя (когда разрежение в воздушном фильтре невелико) картерные газы поступают через шланг 2 и золотник 1 под дроссельные заслонки карбюратора.

При остальных режимах работы двигателя картерные газы поступают в карбюратор через воздушный фильтр 3. В маслоотделителе 7 масло выделяется и по отводной трубке 8 стекает в масляный поддон.
Пламегаситель 5 предотвращает проникновение пламени в картер двигателя при возможных вспышках в карбюраторе.

***

Учебные дисциплины
  • Инженерная графика
  • МДК.01.01. «Устройство автомобилей»
  •    Карта раздела
  •       Общее устройство автомобиля
  •       Автомобильный двигатель
  •       Трансмиссия автомобиля
  •       Рулевое управление
  •       Тормозная система
  •       Подвеска
  •       Колеса
  •       Кузов
  •       Электрооборудование автомобиля
  •       Основы теории автомобиля
  •       Основы технической диагностики
  • Основы гидравлики и теплотехники
  • Метрология и стандартизация
  • Сельскохозяйственные машины
  • Основы агрономии
  • Перевозка опасных грузов
  • Материаловедение
  • Менеджмент
  • Техническая механика
  • Советы дипломнику
Олимпиады и тесты
  • «Инженерная графика»
  • «Техническая механика»
  • «Двигатель и его системы»
  • «Шасси автомобиля»
  • «Электрооборудование автомобиля»

Принцип работы клапана вентиляции картерных газов — как работает

Проверка вашего клапана PCV

К сожалению, многие производители автомобилей не являются строгими в обслуживании системы PCV. Некоторые предлагают обслуживать систему каждые 20 000 или 50 000 миль (50-100 тысяч км.) Тем не менее, более частая проверка системы помогает предотвратить дорогостоящий ремонт и обеспечить бесперебойную работу двигателя.

Чтобы начать проверку системы PCV в вашем автомобиле, сначала найдите клапан вентиляции картерных газов и связанные с ним компоненты. В зависимости от вашей конкретной модели вы можете найти клапан на резиновой втулке на крышке клапана; на вентиляционном отверстии вокруг впускного коллектора; или ближе к одной стороне блока двигателя.

Имейте в виду, что некоторые новые модели вообще не имеют PCV; вместо этого вы найдете простой вакуумный шланг, идущий от крышки клапана до воздуховода. Другие могут иметь простой ограничитель на месте. Тем не менее, вы можете проверить ограничитель, шланги и другие компоненты.

Если вы не знакомы с системой PCV в своем автомобиле или не можете найти его, купите руководство по обслуживанию для конкретной марки и модели автомобиля в местном магазине автозапчастей. Руководство по послепродажному обслуживанию стоит около 20 долларов США и содержит инструкции для многих простых задач по техническому обслуживанию и ремонту. Если вы не хотите покупать копию прямо сейчас, поищите руководство в интернет.

К счастью, проверка системы не занимает много времени.

Проверьте детали системы PCV. Резиновые компоненты, такие как прокладки, уплотнительные кольца и шланги, разбухают, становятся твердыми и ломкими после постоянного воздействия высоких температур. Они начинают течь

При необходимости замените один или несколько из этих компонентов.
Осторожно отсоедините клапан и все шланги системы и осмотрите их. Если вы обнаружили, что шланги заполнены слизью, очистите их растворителем для лака и замените.
Многие модели двигателей используют простой недорогой клапан, и многие автовладельцы просто заменяют его через каждый интервал обслуживания

Другие включают в себя нагревательные элементы и стоят дороже. Независимо от типа PCV, который используется в вашем двигателе, всегда покупайте качественный, так как с большей вероятностью будет возможна более точная калибровка для конкретной модели двигателя.
На некоторых двигателях вы найдете сетчатый фильтр под клапаном. Некоторые производители автомобилей рекомендуют заменять фильтр каждые 30 000 миль или около того.
Большинство PCV содержат подпружиненное устройство. Как только вы удалите клапан, встряхните его рукой. Вы услышите погремушку. Если вы этого не слышите, пришло время заменить клапан.

Некоторые транспортные средства, включая некоторые старые модели Ford Escort, оснащены небольшим полым пластиковым блоком без движущихся частей. Если у вас есть клапан такого типа, просто очистите его лаковым растворителем, если необходимо, и переустановите.

Какие бывают неисправности клапана?

Наличие неисправности можно определить по характерным признакам.

  1. Разбрызгивание масла и его увеличенный расход.
  2. Загрязнение фильтра.
  3. Двигатель не запускается на полную мощность или можно услышать тонкий свист двигателя.

Основные неисправности.

  1. Клапан и мембрана – загрязнены.
  2. Вытяжные отверстия и патрубки – загрязнены.
  3. Износилась и расплющилась мембрана.

Картерные газы обычно полностью не освобождаются от масла в маслоочистителе. Все составные части системы – мембраны, патрубки, клапаны загрязняются и забиваются масляной сажей. Если водитель не находит время почистить их, то увеличивается картерное давление. Появляется жесткий запах, гарь и копоть при работающем моторе. Можно заметить, что увеличивается расход масла. Когда клапан выходит из строя, увеличивается давление масла, и оно выталкивается через уплотнения и прокладки.

Износ клапана также характеризуется уменьшение мощности двигателя. В этом случае, давление в системе выхлопа увеличивается или даже останавливается работа ДВС полностью. Если поврежденный клапан полностью не перекрывается мембраной, то кислород, попадая в камеру сгорания, поможет двигателю выйти из строя.

Проблема нагара клапана

Данная проблема является одной из многих провоцирующих ухудшение работоспособности двигателя. Нагар появляется даже после переработки и очистки газов. Картерные газы все равно содержат в себе масло после стадии очистки и в результате движения газов туда и обратно, клапан постепенно начинает загрязняться.

После накопления большого количества осадков с газов, начинает вбирать в себя грязь. Из-за этого нарушается циркуляция газов, которая может привести к различным негативным последствиям.

Решение проблемы нагара

Камеру сапуна и клапан периодически необходимо прочищать, для этого необязательно быть гением. Вопреки утверждениям, самостоятельную чистку вентиляционных клапанов проводить не тяжело и даже намного проще, чем кажется.

Для начала вам следует изучить общую информацию о самом процессе очистки. Это вы можете сделать на любом специализированном форуме. Сейчас нет проблемы в поиске необходимой информации в интернете.

Предлагаем вам ознакомиться со стандартной базовой инструкцией по очищению вентиляции картерных газов:

  • Первым делом следует открутить бачок охлаждающей жидкости и отсоединить провод от датчика и трубку блока. Бачок необходимо зафиксировать в вертикальном положении. Далее следует отсоединить дроссельную заслонку, трубку от блока и вынуть его наружу.
  • Следующим шагом мы раскручиваем хомуты у тройника и отсоединяем клапаны. Прочищаем все детали, которые располагаются за клапаном. После тщательной очистки и просушки в обратном порядке собераем все.
  • Данной процедуры не всегда будет достаточно. Для большей уверенности вам будет лучше обзавестись маслоуловителем. Принцип работы данного устройства состоит в том, что отработанные картерные газы насыщенные парами масла попадают в «ловушку», называемую маслоуловитель.

Основными признаками неисправности вентиляционного клапана картерных газов (КВКГ) является:

  • увеличенный расход масла;
  • чрезмерное давление под клапанной крышкой;
  • появление дыма из под капота;
  • появление постороннего звука в районе КВКГ;
  • ухудшение динамических характеристик автомобиля.

Причины, по которым возникает проблема с системой циркуляции выхлопных газов:

  • разрыв мембраны КВКГ;
  • загрязнение шлангов вентиляции картерных газов;
  • трещины и поломки шлангов, за счет которых осуществляется рециркуляция картерных газов.

Под воздействием этого через клапан рециркуляции газов может втягиваться масло, которое находится в поддоне клапана двигателя. В наихудшем случае это приведет к гибели клапанов.

Также через поврежденные шланги возможен подсос воздуха, что приводит к снижению динамических показателей двигателя. Зачастую загрязнение шлангов КВКГ приводит к тому что сальники двигателя выдавливаются и начинает вытекать масло.

Как проверить клапан PCV

Проверить клапан PCV можно как физически, так и программно. Да-да, программно. У него хоть и отсутствуют провода и он не управляется блоком управления двигателем, но своё влияние на систему оказывает и, значит, принимает участие в процессе управления двигателем.

Дело в том, что двигателю нужна строго определённая масса воздуха для работы на заданных оборотах. Эта масса воздуха регулируется регулятором холостого хода (РХХ).

Если необходимо увеличить обороты холостого хода, то ЭБУ увеличивает шаги РХХ и в двигатель поступает больше воздуха. Если необходимо снизить обороты, тогда всё происходит наоборот. Ничего сложного.

Именно этот алгоритм позволяет нам без проблем проверить исправность клапана PCV. Об этом я рассказывал в видео, которое расположено выше.

Для этого нам необходим адаптер для диагностики авто и программа Chevrolet Explorer.

Если совсем не понимаете о чем речь, тогда рубрика диагностики Шевроле своими руками для Вас. Она не большая, но очень подробная и пошаговая, поэтому сложностей возникнуть не должно.

Собственно, подключаем адаптер к автомобилю и прогреваем его до рабочей температуры. Смотрим на шаги РХХ. Они, допустим, составляют 24 шага

Отключаем трубку клапана от впускного коллектора. Шаги РХХ должны снизиться вплоть до нуля

Это означает, что клапан PCV не заклинивший в открытом положении, потому что он весь воздух через себя не пропускал.

Теперь необходимо проверить, что клапан не заклинил в закрытом положении. Для этого подключаем всё обратно ко впускному коллектору и запускаем двигатель на холостом ходу.

Наши шаги вернулись к своему значению 24. Пережимаем полностью трубку между клапаном и впускным коллектором. При исправном клапане шаги РХХ должны подрасти на 3-5 шагов. Это означает, что клапан небольшую часть воздуха пропускал через себя на холостом ходу, что, собственно, и должен был делать.

Данным методом я пользуюсь очень давно и он меня никогда не подводил.

Но, если у Вас нет адаптера для диагностики, то оценить ситуацию можно и без него.

1.Отключаем шланг клапана PCV от коллектора – обороты должны резко возрасти, а затем плавно прийти в норму. Значит клапан PCV не заклинивший в открытом положении.

2.Собираем всё обратно и запускаем двигатель. Пережимаем шланг от клапана PCV к впускному коллектору. При этом обороты должны совсем немного просесть, а клапан должен издать четкий щелчок.

Также можно его проверить, следующим образом. Выкручиваем клапан

И подключаем его выкрученным к впускному коллектору

Запускаем двигатель и прикасаемся к задней части клапана. При этом должен раздаваться чёткий щелчок.

На этом видео я показывал этот процесс.

Но необходимо понимать, что таким способом мы проверяем подвижность клапана PCV и что он не заклинивший, а пропускную способность клапана PCV таким способом на 100% не проверить.

Зачем регулярно проверять клапан принудительной вентиляции картера

Клапан принудительной вентиляции картера (PCV), отводит отработанные газы из картера двигателя, перенаправляя их обратно во впускной канал.

Вы даже не представляете, насколько важно его регулярное техническое обслуживание, так как неисправный клапан PCV может нарушить работу двигателя и внутренних компонентов. Если он блокируется или забивается, давление в картере увеличивается до уровня, который приводит к утечкам, а соответственно и повышенному расходу масла

Если он блокируется или забивается, давление в картере увеличивается до уровня, который приводит к утечкам, а соответственно и повышенному расходу масла.

Также неработающая система вентиляции, приводит к накоплению нагара на впускных клапанах.

Если клапан PCV или шланги заблокированы, из-за повышенного давления масло из картера будет выталкиваться в камеры сгорания, что приведет к сгоранию масла в цилиндрах и синем выхлопным газам.

Большинство клапанов PCV изготовлены из пластика с пружиной внутри.

Как вы можете себе представить, любой пластик изнашивается через 10 лет, а тем более установленный таком горячем месте, как блок двигателя.

Обслуживание клапана PCV не трудная задача, но иногда доступ к нему может быть затруднён, в зависимости от конструкции двигателя.

Обычно он расположен на крышке головки блока, не далеко от горловины для заливки масла.

Иногда на более новых автомобилях с турбонаддувом клапан PCV расположен внутри шланга и его будет довольно трудно найти.

Негативные факторы нерабочей системы вентиляции

Не функционирующая система принудительной вентиляции картера, влияет на работу всего двигателя, а в частности:

— повышение давления в картере двигателя

— повреждения сальников или прокладок

— утечки моторного масла

— увеличение потребления масла

— влага и отложения в картере

— скачки оборотов двигателя, и возможно черный дым

— обеднённая воздушно-топливная смесь

— наличие моторного масла в клапане или шланге вентиляции картера

— жёсткий запуск двигателя

— загорается индикатор «ЧЕК»

— грубая работа двигателя на холостом ходу

— пропуски двигателя на холостом ходу

Как видите, обслуживание клапана PCV важнее, чем вы думаете.

Как проверить, не сломан ли клапан PCV?

Есть несколько способов проверить, рабочий ли клапан PCV, как визуально осмотрев его, так и не снимая с автомобиля.

Откройте масляную крышку при работающем двигателе

Этот метод хорош тем, что вы можете диагностировать неисправный клапан PCV, не извлекая его. Дайте двигателю поработать на холостом ходу и снимите крышку заливки масла.

Если вы чувствуете, что масляная крышка всасывается в двигатель, и её трудно снять, у вас слишком много вакуума внутри картера, что скорее всего, вызвано неисправным клапаном PCV.

Если вы снимаете масляную крышку и чувствуете, что она отрывается от двигателя, у вас слишком высокое давление, а это часто вызвано плохим клапаном PCV. (Однако это также может быть вызвано другими проблемами, такими как изношенные поршневые кольца, но намного дешевле сначала проверить клапан PCV).

Визуально проверьте клапан PCV и пружину

Если вы чувствуете, что у вас слишком много вакуума или слишком высокое давление внутри клапана PCV, но вы не можете обнаружить утечки. Снимите клапан PCV с вашего автомобиля и проверьте его визуально, чтобы увидеть, нет ли каких-либо повреждений на клапане или пружине.

Проверьте, целостность шлангов

Иногда, когда шланги изнашиваются, они могут полопаться, что приведет к увеличению расхода масла и повышению давления внутри картера.

Общие коды неисправностей, связанные с клапаном PCV

При неисправности клапана PCV появляются некоторые распространенные коды неисправностей. Помните, если вы видите эти коды неисправностей, это 100% что система вентиляции картера вышла из строя. Конечно эти коды могут быть связанны и с другими вещами, но всегда лучше начать с клапана.

P052E — функционирование клапана вентиляции картера

P0171 — обеднённая воздушно-топливная смесь

P0300 — случайные / множественные пропуски зажигания (воспламенения) в цилиндре

P053A — подогреватель сапуна вентиляции картера — обрыв цепи.

Вопросы эксплуатации клапана вентиляции картерных газов

Самая распространенная проблема, приводящая к закупориванию клапана – накопление отложений углерода на гнезде или пластине клапана. В большинстве случаев это вызвано эксплуатацией двигателя с некорректным соотношением топлива и воздуха в топливо-воздушной смеси.

Если клапан рециркуляции картерных газов засорен, то при открытии и закрытии он будет подклинивать и медленнее реагировать на изменение положения дроссельной заслонки.

При замене клапана рециркуляции необходимо тщательно очищать присоединенные к нему патрубки. В случае, если клапан забит, нагар неминуемо осаждается в подающей трубке

По этой причине, чистоте трубопроводов следует уделить повышенное внимание.

Процесс вывода картерных газов

Выведение отработанных картерных газов имеет некоторое отличие у двигателей карбюраторного и инжекторного типа. Независимо от этого вся процедура имеет стандартную схему:

  1. Выхлопные газы всасываются из картера мотора.
  2. В маслоотделителе происходит очистка газов от примесей масляных паров и иных продуктов сгорания.
  3. Очищенные газы продвигаются к впускному коллектору по воздушным патрубкам.
  4. Картерные газы смешиваются с топливной смесью и сгорают в цилиндрах двигателя.

Не исключена возможность того, что в поддон картера попадает небольшой объем газа. В результате этого процесс отбора картерных газов нарушается.

Процесс вывода картерных газов

Выведение отработанных картерных газов имеет некоторое отличие у двигателей карбюраторного и инжекторного типа. Независимо от этого вся процедура имеет стандартную схему:

  1. Выхлопные газы всасываются из картера мотора.
  2. В маслоотделителе происходит очистка газов от примесей масляных паров и иных продуктов сгорания.
  3. Очищенные газы продвигаются к впускному коллектору по воздушным патрубкам.
  4. Картерные газы смешиваются с топливной смесью и сгорают в цилиндрах двигателя.

Не исключена возможность того, что в поддон картера попадает небольшой объем газа. В результате этого процесс отбора картерных газов нарушается.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector