На что влияет щелочное число в масле на работу двигателя
Содержание:
- Основные технические характеристики моторных масел
- Сульфатная зольность
- Что мы видим на этикетке
- Химические процессы, протекающие в смазочной системе двигателя
- Зольность — топливо
- 6 Аппаратура
- Химические процессы в системе смазки двигателя ↑
- Практическое значение
- Классификация смазок для моторов по ACEA
- Каков вред воды после обратного осмоса
- Показатели щелочи для дизеля и бензина
Основные технические характеристики моторных масел
Динамическая вязкость
Динамическая вязкость показывает зависимость изменения вязкости масла от скорости перемещения смазываемых деталей относительно друг друга. Определяется на имитаторе холодной прокрутки (CCs) при -30°С.
Вязкость кинематическая
Кинематическая вязкость показывает текучесть моторного масла при нормальной и высокой температуре. Равна отношению динамической вязкости к плотности масла. Для замера используют стеклянный вискозиметр: засекают период, за который масло стекает по капиляру.
Индекс вязкости
Индекс вязкости — это коэффициент изменения вязкости между двумя температурами. Чем выше коэффициент, тем меньше падение вязкости при нагревании масла. Масло с более высоким ИВ обладает лучшей текучестью при низких температурах и более высокую вязкость при рабочих температурах.
Температура вспышки (flash point)
Температура вспышки — самая низкая температура, при которой пары смазочного материала образуют смесь с воздухом, воспламеняющуюся при контакте с огнем. Само масло при этом еще не воспламеняется. Определяют в открытом или закрытом тигле, в последнем случае она на 20-25 градусов ниже..
Температура застывания (por point)
Температура застывания — самая низкая температура, при которой масло еще сохраняет текучесть. Температура застывания, согласно стандартам, на 3°С выше температуры застывания.
Температура застывания показывает возможность переливания моторного масла без необходимости подогрева.
Общее щелочное число (Total Base Number, TBN)
Показатель, характеризующий способность масла нейтрализовать кислоты, называется TBN (общее щелочное число). В процессе сгорания топливно-воздушной смеси образуются кислоты, которые негативно влияют на моторное масло — окисляют его. Чтобы противостоять этому процессу, в моторное масло добавляют специальные моющие и диспергирующие присадки, которые и повышают общую щелочность.
Широко используется метод ASTM D2896, при котором щелочность определяется путем титирования хлорной и уксусной кислотами.
Кислотное число (TAN)
TAN — показатель, характеризующий наличие в масле кислот, которые приводят к коррозии металлов. По этому показателю можно косвенно судить о качестве базового масла. В хорошо очищенных маслах II и III группы, например, TAN будет меньше, чем в I группе. Стандартный метод измерения — ASTM D664
Зольность
Зольность — это показатель количества несгораемых примесей, которые являются следствием наличия в масле комплекса присадок с металлическими и органическими компонентами. Для разных категорий масел существуют свои норматвы содержания сульфатной золы.
Полнозольные (Full SAPS) масла
По классификации ACEA — A1/B1, A3/B3, A3/B4, A5/B5. Такие масла могут негативно сказываться на многоступенчатых каталитических нейтрализаторах и фильтрах DPF. Типичное значение зольности — 0,9 — 1,1%.
Малозольные (Low SAPS) масла
По классификации ACEA — C1 и C4. По стандарту содержание сульфатной золы не должно превышать 0,5%.
Испаряемость — это показатель, характеризующий склонность масла к угару. Выражается в процентах. Для качественных масел показатель не должен превышать 14%.
Сульфатная зольность
Что определяет параметр сульфатной зольности
Сульфатная зольность – это содержание в масле различных твердых и неорганических соединений, которые образуются после сжигания смазочного материала. Определяется в процентах от общей массы масла.
Есть два понятия зольности – зольность базового масла и сульфатная зольность. Если объяснять просто, то обычная зольность указывает на чистоту базового масла, то есть сколько в самой базе без добавления пакета присадок содержится солей и несгораемых примесей. Сульфатная же зольность определяется для уже готового масла с добавленным пакетом присадок, и она определяет количество присадок и их состав, это относится к солям натрия, калия, фосфора и других веществ.
Почему так? В любом ДВС некоторое количество масла испаряется под воздействием высокой температуры, то есть угорает. Этот процесс приводит к тому, что несгораемые примеси, которые всегда есть в масле, оседают на стенках. То есть чем выше у масла зольность, тем больше будет этого налета. Особенно чувствительны к высокой зольности системы, оборудованные сажевыми фильтрами, для них можно использовать только масла из специальной категории LowSAPS – малозольные масла.
Как определяется сульфатная зольность готового масла
В лаборатории масло сжигают при температуре 775 градусов до образования твердых остатков, именно эта твердая масса и есть та самая зола, несгораемые остатки, которые оседают на стенках двигателя и забивают систему очистки выхлопных газов. Массу остатков соотносят с количеством тестируемого масла и выводят процентное соотношение.
Если говорить о зольности чистой основы, без присадок, то зачастую она не превышает 0,005%, в готовом же масле мы говорим о цифрах в 2%, эту разницу дают добавляемые в масло присадки. То есть мы получаем такую картину – чем «жирнее» пакет присадок в масле, тем больше будет золы. Так что рассматривать этот показатель можно двояко. С одной стороны, масло должны быть чистыми не оставлять отложений на двигателе. С другой стороны, высокая зольность говорит о богатом пакете присадок.
На что влияет сульфатная зольность
Кроме того, что высокое содержание сульфатной золы приводит к большому количеству налета внутри двигателя, она влияет на некоторые еще параметры масла. Зольность напрямую связана с щелочным числом моторного масла, о котором еще поговорим ниже. Количество золы прямо пропорционально количеству щелочи, то есть чем больше золы, тем больше щелочи и тем выше моющие свойства масел.
Количество зольных отложений при сгорании сказывается на температуре вспышки масла, о которой уже говорили выше. Особенно хорошо это заметно в отработке. Со временем присадки выгорают, и чем меньше их остается, тем ниже температура вспышки, то есть эксплуатационные качества масла падают.
Если говорить о самой конструкции автомобиля, то масла с большим количеством золы негативно сказываются на системе зажигания, затрудняют пуск в мороз, загрязняют элементы системы очистки выхлопа – катализаторы, сажевые фильтры, системы EGR. А малозольные масла, в свою очередь, не обеспечивают нужную защиту для нагруженных двигателей.
Классификация масел в зависимости от количества сульфатной золы
Классификация ACEA уделяет большое внимание сульфатной зольности масел и даже подразделяет их на категории, в зависимости от ее содержания в готовом составе:
- Full Saps – полнозольные смазки, допускается содержание золы в пределах 1-1,1%.
- Mid Saps – среднезольные смазки, допускается содержание золы от 0,6 до 0,9%.
- Low Saps – малозольные, менее 0,5%.
Зачастую производители размещают информацию на канистре масла о принадлежности масла к той или иной категории.
Что мы видим на этикетке
При покупке моторного масла важно внимательно изучать информацию, которая приведена на упаковке
Здесь доступны следующие сведения:
Спецификация API и ACEA, по которым можно предварительно определить качество продукта и возможность его применения
Важно убедиться, что требования производителя в отношении класса соответствуют тому, что заявляет производитель.
Технологические особенности. Производитель часто указывает, что масло создано с учетом современных технологий и соблюдением действующих международных патентов
Это свидетельствует об особых свойствах моторного масла и его способности справляться с любыми нагрузками.
Допуски (одобрения) производителей. Некоторые заводы-изготовители рекомендует применение определенных типов смазок. К примеру, может быть указано, что продукт отвечает стандартам Пежо, Опель, БМВ и других брендов.
Название товара и химический состав. Здесь необходимо смотреть на тип масла, к примеру, синтетическое, минеральное или полусинтетичекое. В остальном эти данные не имеют большого значения.
Штрих-код. По нему легко оценить, в какой стране сделан продукт, убедиться в его оригинальности и получить дополнительные сведения.
Сфера применения. Производитель должен указать для какого транспорта предусмотрен этот продукт. К примеру, для легковых машин с бензиновыми моторами.
Номер партии и дата производства. Также помогает определиться с выбором при возникновении сложностей.
Псевдомаркировка. Многие производители используют разные надписи на упаковке для привлечения внимания покупателей. При этом практической пользы они не несут.
Специальные категории.
Указание вязкости. Считается наиболее важным параметром, по которому можно судить о возможности применения моторного масла в определенный сезон и применительно к конкретному модельному ряду. Важно убедиться, чтобы указанный класс соответствовал запросам производителя.
Также читайте как отличить оригинально масло от подделки.
В комплексе указанные выше характеристики позволяют принять решение о покупке смазки и, соответственно, избежать негативных последствий для двигателя.
Химические процессы, протекающие в смазочной системе двигателя
В то время как двигатель автомобиля работает, в камере сгорания происходят сложные химические процессы. Так, чтобы получить в камере взрывной эффект, в карбюраторе формируется смесь, которая включает в себя впрыскиваемое топливо и воздух.
Во время этого процесса происходит формирование соединения, которое при горении отрицательно воздействует на внутренние компоненты двигателя и эксплуатационные свойства смазок. Кислотные продукты горения увеличивают скорость протекания процесса коррозии и износа двигателя. На масло продукты горения также влияет негативно: под его воздействием смазка рано теряет химически активные присадки, необходимые для стабильной работы.
Если силовой агрегат ко всему прочему является и значительно изношенным, то прибавляется ещё одна проблема: повышается риск проникновения в картер отработанного газа вместе с продуктами горения, которые со временем начинают реакции окисление вместе со смазкой. А масло, содержащее в себе большое количество продуктов окисления, контактируя внутри двигателя с деталями, вызывает ускоренную коррозию и, как следствие, влияет на преждевременный вывод из строя.
Чтобы нейтрализовать негативное влияние кислотной среды используется щёлочь. Реакция нейтрализации кислотных продуктов, находящихся в составе моторного масла, протекает в картере; каналах, участвующих в подаче смазки. Набор присадок машинного масла, содержащих в своём составе щёлочные компоненты, эффективно нейтрализуют агрессивные кислотные продукты.
Со временем реакции нейтрализации протекают всё медленнее, подавляя меньшее число кислотностей, которые в свою очередь оседают на стенках и поверхностях смазочной системы, засоряя её. Это ведёт к тому, что ток смазки в каналах ухудшается, что может повлечь за собой массу проблем:
- «масляное голодание» распредвала (за этим обычно следует скорый износ опорных шеек);
- также из-за этого вкладыши на коленвале могут начать срабатывать слишком рано, так как в каналах происходит блокирование циркуляции смазки.
Зольность — топливо
Зольность топлива определяют по ГОСТ 1461 — 52 следующим образом: выпаривают 25 г топлива в тигле и остаток прокаливают до полного озоления. Полученную золу выражают в процентах. Зольность является косвенной характеристикой склонности топлив к нагарообразованию.
Зольность топлива характеризует содержание в нем несгораемых примесей: чем меньше зольность, тем меньше неорганических примесей попадает в нагар. Увеличение массы золы в нагаре ведет к повышению его абразивных свойств.
Зольность топлива не влияет на толщину загрязнений; по достижении ими определенных пределов зола больше не осаждается на загрязненных трубах. Толщина липких загрязнений в области низких температур зависит от АР и характеристик золы и прогрессирует во времени. Вследствие загрязнения конвективных поверхностей нагрева ухудшаются условия теплопередачи и возрастают их аэродинамические сопротивления. В результате повышается температура уходящих газов, увеличиваются потери q2 и расход электроэнергии на тягу. Для нормальной и надежной работы котлов необходимо поверхности нагрева поддерживать чистыми.
Зольность топлива определяют путем сжигания точной навески и прокаливания остатка в муфельной печи. Навеску помещают в тигель или в фарфоровую лодочку. Нужно объяснить учащимся, что слишком быстрое сжигание приводит к заниженным результатам: сильный ток образующихся газов может унести с собой частички золы и топлива.
Схема газогенераторной установки для снабжения лаборатории газом. |
Зольность топлива должна быть по возможности мала. В случае необходимости работать с многозольным топливом под камерой горения помещают колосниковую решетку с подвижными колосниками, которые можно поворачивать при помощи рукоятки. Под колосниками должно быть достаточно места для золы.
Зольность топлива особенно высока, когда на сжигание направляются тяжелые остатки с технологических установок, где перерабатываются плохо обессоленные и обезвоженные нефти, либо когда в них добавляется так называемая ловушечная нефть. В процессе горения составные части золы образуют отло-жения, которые, оседая на трубчатом змеевике, ухудшают теплопередачу, а соединения ванадия и SO3 вызывают высокотемпературную коррозию. Если температура металла в печи превышает 600 — 650 С, при сжигании тяжелого топлива, содержащего ванадий, за короткое время разрушаются как ферритные, так и аустенитные стали труб и трубных подвесок.
Зольность топлива в лаборатории определяют путем сжигания его в фарфоровом тигле при 800 С с последующим взвешиванием остатка.
Зольность топлива зависит от технологии его производства — глубины обессоливания нефти при ее подготовке на промыслах и нефтезаводах, степени очистки остатков от ката-лизаторной пыли и реагентов. Зола жидких котельных топлив, содержащая соли ванадия, никеля и других тяжелых металлов, откладывается на поверхностях котлов, экономайзеров и другого оборудования, сокращая срок межремонтного пробега котельного оборудования.
Зольность топлива определяется путем выпаривания 1 л топлива до получения 30 — 40 мл остатка, который затем прокаливают в тигле до полного озоле-ния. Зольность топлива выражается процентным содержанием полученной золы в топливе.
Зольность топлива определяется его внутренней и внешней зольностью.
Коэффициенты избытка воздуха в топке. |
Зольность топлива затрудняет его сжигание и повышает лотерю тепла со шлаком ( см. гл
Важное значение имеет температура размягчения золы. При низкой температуре размягчения золы начинается ее налипание на трубы котла — шлакование труб.
. Зольность топлив, содержащих летучие металлоорганические соединения, может быть определена только специальными химическими методами.
Зольность топлив, содержащих летучие металлоорганические соединения, может быть определена только специальными химическими методами.
Зольность топлива особенно высока, когда па сжигание направляются тяжелые остатки от технологических установок, где перерабатываются плохо обессоленные и обезвоженные нефти, либо когда в них добавляют так называемую ловушечную нефть. В процессе горения составные части золы образуют отложения, которые, оседая на трубчатом змеевике, ухудшают теплопередачу, а соединения ванадия и 8СЬ вызывают высокотемпературную коррозию. Если температура металла в печи превышает GOO-650 С, то при сжигании тяжелого топлива, содержащего ванадий, за короткое время разрушаются как ферритные, так и аустепитпые стали труб и трубных подвесок.
6 Аппаратура
Для проведения испытания используют стандартную лабораторную аппаратуру и следующее оборудование.
6.1 Потенциометрический титрометр с микропроцессорным управлением системы титрования и автоматической бюреткой, обеспечивающими быстрое и надежное титрование при проведении ежедневных испытаний. Они автоматически выполняют титрование, построение и оценку кривой титрования. Для обеспечения требуемой точности автоматическая бюретка должна иметь точность не менее 1/5000 фактического рабочего объема цилиндра. Титрование хлорной кислотой (0,1 моль/л) может быть выполнено равными объемными долями (постепенно возрастающее) или в зависимости от построения кривой переменным шагом в объеме (динамическое). Пригодны оба метода дозирования, однако оптимальное распределение точек измерения может быть достигнуто при динамическом титровании. Необходимо следовать рекомендациям изготовителя аппаратуры при регулировке параметров титрования.
6.2 Комбинация из стеклянного индикаторного электрода и сравнительного электрода серебряный/хлорсеребряный для измерения в безводных средах. При использовании рН-электродов в водной среде часто источниками проблем (помехи, колебания сигналов, вялая реакция регулировки) являются электростатические помехи. Чтобы свести к минимуму их воздействие и одновременно повысить точность и надежность измерений, стеклянный рН-электрод должен соответствовать следующим требованиям. Используют комбинированный электрод с низким сопротивлением мембраны (100 МОм — 200 МОм). Встроенный электрод сравнения должен иметь гибкую муфту мембраны для облегчения ее очистки. Это гарантирует минимальное сопротивление мембраны электрода сравнения и надежную защиту электрода. Электрод сравнения также должен иметь обозначение «серебряный/хлорсеребряный». Электрод должен иметь внутреннюю защиту, чтобы электростатический эффект не зависел от уровня электролитов (5.7 и 5.8).
6.3 Механическая или электрическая мешалка с регулируемым числом оборотов, пропеллерная или лопастная из химически инертного материала. Электрическая мешалка должна быть заземлена таким образом, чтобы при включении или отключении питания электродвигателя не происходило изменения показаний измерительного прибора в процессе титрования. Магнитную мешалку с перемешивающим стержнем можно использовать при условии соответствия указанным выше условиям.
6.4 Высокий стакан для титрования соответствующего объема.
6.5 Стенд для титрования, обеспечивающий установку и закрепление стакана, электродов, мешалки и бюретки.Примечание — Рекомендуется использовать штатив, позволяющий удалять химический стакан без изменения положения электродов, бюретки и мешалки.
6.6 Весы с точностью взвешивания до 0,001 г для значений щелочных чисел не более 30 и с точностью до 0,0001 г — для значений щелочных чисел не менее 30.
Химические процессы в системе смазки двигателя ↑
Кислоты, как известно, нейтрализуются с помощью щелочи, и в случае с двигателем внутреннего сгорания химические процессы имеют схожий характер. Так как между стенками цилиндра и кольцами поршня имеются зазоры (выражены в изношенных двигателях), небольшая часть отработанных газов может попадать в картер (картерные газы), где оседает на стенках и вступает в реакцию со смазочным материалом. Реакции нейтрализации проходят в масляной среде двигателя: картере, масляных каналах, на стенках и шестернях масляного насоса. По мере эксплуатации, щелочной компонент присадок постоянно вступает в реакцию и со временем нейтрализует все меньше побочных продуктов работы двигателя. Некоторое число непрореагировавших соединений оседает в виде шлама и сажи на частях системы смазки, засоряя масляные каналы и ухудшая циркуляцию. Эти процессы могут привести к следующим последствиям:
- Масляное голодание распределительного вала и как следствие износ его опорных шеек;
- Засорение масляных каналов в коленчатом вале и преждевременное срабатывание вкладышей.
Практическое значение
Моторное масло работает в сложных условиях. Давление, высокие температуры, проникающее через кольца топливо, раскалённые газы и сажа – всё это ведёт к неизбежным химическим преобразованиям как базы, так и присадочных компонентов масла.
Под воздействием высоких температур и в присутствии кислорода происходит окисление моторного масла. Несмотря на то, что базовый состав, особенно синтетических моторных масел, имеет высокую химическую стабильность, при высокой температуре неизбежно формируются окислы.
Что плохого в окислах? По большому счёту, окисление моторного масла – это его выгорание. Ведь сам процесс горения – это с химической точки зрения реакция окисления с выделением тепла. А продукты такой реакции, то есть окислы, в большинстве своём представляют собой бесполезный балласт из химически нейтральных или малоактивных соединений.
Для краткого описания совокупности большинства подобных окислов существует даже особый термин – шлам. Продукты термического разложения масла, то есть шлам, оседают на поверхностях двигателя, что приводит к его загрязнению. Загрязнение мотора чревато перегревом. Также частицы шлама зачастую содержат и сверхтвёрдые окислы, которые работают как абразивы.
Часть окислов обладает химической активностью. Некоторые из них способны инициировать коррозионные процессы или локально разрушать неметаллические детали мотора (в основном резиновые уплотнители).
Гидроксид калия работает в двух направлениях:
- частичная нейтрализация образующихся кислот;
- расщепление на как можно меньшие фракции шламовых соединений и препятствие их формированию.
При работе двигателя щелочное число моторного масла уменьшается, что является нормальным процессом.
Классификация смазок для моторов по ACEA
Такая классификация создана ассоциацией производителей Европы, в состав которых входят крупнейшие бренды. Здесь указываются эксплуатационные параметры, назначение и категорийность смазки.
При этом вся продукция условно делится на смазки для двигателей на бензине или дизеле.
После последних изменений предусмотрено деление на следующие категории:
- А/В — для моторов на бензине или дизельном топливе. Применяется для легковушек, фургонов, микроавтобусов. Условно делится на четыре класса — А1/В1-Х, А3/В3-Х, А3/В4-Х и А5/В5-Х, где «Х» — 12.
- С — для бензиновых / дизельных силовых агрегатов, которые оборудованы каталитическим нейтрализатором. Четыре класса — от С1-12 до С4-12.
- Е — для грузовиков с дизельными моторами. Е4-12, Е9-12, Е6-12 и Е7-12.
При обозначении АСЕА, кроме класса, прописывается и год ввода в действие и номер создания, когда были обновлены требования. Под такие сертификаты подходит также российская продукция.
Каков вред воды после обратного осмоса
Вам может быть интересно узнать, что обратный осмос был фактически разработан как метод очистки воды более 40 лет назад. Этот процесс использовался главным образом для удаления солей воды.
Ниже перечислены три основных недостатка употребления воды, очищенной с помощью обратного осмоса:
1. Вода деминирализируется
Существуют некоторые недостатки использования этой системы очистки воды. Во-первых, вред фильтра обратного осмоса заключается в том, что большинство этих систем очистки воды не имеют возможности различать «плохие» соединения и хорошие. В то время как эта система фильтрации удаляет вредные загрязняющие вещества, она также удаляет и полезные для нашего организма минералы, в которых нуждаются наши организмы, например, железо и марганец.
В идеальном мире это не имело бы никакого значения, потому что мы бы получали все необходимые вещества из продуктов, которые едим. К сожалению, в современном мире не все так просто. Например, почти 10% женщин страдают дефицитом железа, что может привести к анемии. И дефицит марганца может привести к неисправности всех систем нашего организма, так как этот минерал играет важную роль в балансировании гормонов. Если мы уже не получаем достаточного количества витаминов и минералов из нашего рациона, а затем мы устраняем их также из нашей питьевой воды, это может привести к более высокому риску возникновения дефицита важных веществ.
Кроме того, вред воды после обратного осмоса заключается также в следующем – приготовление пищи с использованием деминерализованной воды, например, воды, пропущенной через фильтр обратного осмоса, фактически уменьшает количество витаминов и минералов, содержащихся в цельных продуктах. Например, при использовании деминерализованной воды, такой как вода обратного осмоса, вы можете потерять до 60% магния или 70% марганца из вашей пищи.
2. Вода становится кислой
Одной из основных причин, по которой вода, очищенная с помощью обратного осмоса вредна для организма человека, является то, что удаление минералов делает воду более кислой (часто значительно ниже 7,0 pH). Употребление закисленной воды не поможет поддерживать здоровый баланс pH в крови, который должен быть слегка щелочным.
В зависимости от исходной воды и конкретной системы обратного осмоса, вода после фильтрации может иметь водородный показатель воды примерно от 3,0 pH (очень кислотная) до 7,0 pH (нейтральная). В большинстве случаев водородный показатель очищенной с помощью ОС воды имеет от 5,0 до 6,0 pH. PH 7,0 вода после очистки с помощью ОС может иметь если в системе присутствует дополнительный элемент реминерализации.
В медицинских сообществах ацидоз в организме считается основной причиной большинства дегенеративных заболеваний.
Фактически, в 1931 году д-р Отто Варбург получил Нобелевскую премию за обнаружение причины развития рака. По сути, он сказал, что рак может быть вызван отсутствием клеточной оксигенации из-за ацидоза в организме.
Медицинские исследования также определили, что употребление закисленной воды (а также других закисленных напитков) часто вызывает дисбаланс минералов в организме.
Согласно исследованию ВОЗ, вода с малым количеством минералов увеличивала диурез (производство мочи почками) в среднем на 20% и заметно увеличивала выделение ионов натрия, калия, хлорида, кальция и магния из организма.
3. Некоторые критические загрязняющие вещества не удаляются
Несмотря на то, что ОС эффективен для удаления различных загрязняющих веществ из воды, мембрана обратного осмоса НЕ удаляет летучие органические химические вещества, хлор и хлорамины, фармацевтические препараты и множество других синтетических химических веществ, обнаруженных в водопроводной воде.
Однако некоторые системы обратного осмоса теперь имеют многоступенчатую систему фильтрации (в дополнение к ОС мембране), такую как модули с активированным углем, который удаляет хлор и некоторые пестициды.
Показатели щелочи для дизеля и бензина
Щелочное число моторного масла характеризует способность смазки нейтрализовывать вредные кислоты. По природе химической формулы, дизельное топливо при сгорании выделяет большее количество кислот, чем бензины или этанольные смеси. Следовательно, для двигателей, работающих на солярке, показатель TBN будет максимальным ( примерно 10 мг). Бензиновые установки менее требовательны. Поэтому изготовители априори закладывают меньше мгКОН/г в масло (около 2 мг).
Важно! Категорически не рекомендуется повышать характеристики лубриканта путем добавления сторонних присадок. Готовая формула выводится изготовителем с учетом гармоничного сочетания характеристик
Нарушение баланса значений снижает общую эффективность смазки.