Техпроцесс

Зачем уменьшать техпроцесс?

Как я уже говорил выше, оптимизация литографии ведет к размещению большего числа транзисторов на подложке меньшего размера. Говоря простым языком, на одной площади можно расположить не 1, а 1,5 млрд транзисторов, что ведет к повышению производительности без увеличения тепловыделения.

Коэффициент умножения системной шины процессора также возрастает, а значит и его мощь растет.

На данный момент оптимальными процессорами, которые вобрали в себя самое лучшее из современных технологий, можно назвать Intel 8700k и AMD Ryzen 1800x. Есть конечно и более новый вариант от «красных» в лице Ryzen 2700 (12 нм), но его производительность немного скромнее.

разгоннагревследите за новыми

C уважением Андрей Андреев

Планы на будущее

Сейчас TSMC ведет разработку 2-нанометрового техпроцесса. В этом направлении, как сообщал CNews, она работает с лета 2019 г., не забывая при этом про промежуточные 4 и 3 нанометра.

Что такое интеллектуальное предприятие и почему все хотят его построить
Интеграция

Сроки запуска 4-нанометрового производства компания не раскрывает. Выпуск микросхем по 3-нанометровым нормам предварительно запланирован на 2022 г.

И все же, основной упор TSMC делает именно на 2 нм. В июле 2020 г. она совершила прорыв в его создании и заявила, что за счет него можно ожидать появления первых соответствующих чипов не позднее 2024 г. Новой топологией открыто интересуется Apple – в марте 2021 г. она присоединилась к ее разработке, желая в дальнейшем стать основным заказчиком 2-нанометровой продукции TSMC. Благодаря помощи Apple TSMC сместила сроки запуска новой линии с 2024 г. на 2023 г.

За пару недель до заявления TSMC об открытии в создании 1-нанометровой микросхемы американская IBM заявила об изобретении первого в мире процессора с топологией 2 нм. Она смогла уместить 50 млрд транзисторов на кристалле размером с ноготь.

На тот момент у IBM было готово несколько тестовых образцов чипа. Она сравнила их с распространенными сейчас 7-нанометровыми процессорами и заверила, что ее новинка обладает на 75% более высокой производительностью при том же уровне потребления энергии. При этом если снизить производительность до уровня 7 нм, то потребление энергии упадет на 45%.

Технология почти готова

По заявлениям разработчиков, переход на 1-нанометровый техпроцесс в итоге позволит повысить производительность чипов, что приведет к росту быстродействия вычислительных систем в целом. Авторы утверждают также, что 1-нанометровые нормы обеспечивают энергоэффективность почти на грани физических пределов наноразмерных кремниевых полупроводников. С нынешними техпроцессами они эти показатели пока не сравнивают.

До перехода на 1 нм осталось всего несколько лет

При всех преимуществах новой технологии она на момент публикации статьи о ней в Nature еще требовала доработки. Авторы не уточняют, как много времени потребуется прежде, чем в мире заработает первый в мире конвейер, выпускающий 1-нанометровые микросхемы.

В то же время, нет точных данных о том, когда именно TSMC начала работать над этой технологией. Для примера, к освоению 2 нм она приступила летом 2019 г., масштабных успехов в этом она добилась год спустя, а запустить производство по этим нормам компания собирается в 2023 г. Таким образом, 1-нанометровая топология тоже может увидеть свет в самом ближайшем будущем.

Основные элементы

Выделяют самые различные элементы технологической операции. Основными можно назвать следующие:

  1. Установка. Эта часть технологической операции, выполняемая при неизменном закреплении, проводится в самом начале. Ей уделяется также довольно много внимания, так как допущенные ошибки могут стать причиной смещения заготовки при ее обработке.
  2. Позиция. Законченная часть технологической операции, характеризуемая постоянством, должна проводится при фиксировании положения заготовки. Стоит учитывать, что на данном этапе может проводиться и сборка технологической оснастки, которая отвечает за непосредственную фиксацию заготовки.
  3. Технологический переход. Технологический процесс перехода могут осуществляться в рамках одной операции без изменения ранее установленных режимов работы. Он осуществляется в случае, когда обработка заготовки не может быть завершена по причине недостаточной функциональности оборудования. Количество переходов во многом зависит от того, насколько сложна заготовка. Нумерация переходов проводится с учетом последовательности механической обработки заготовки.
  4. Рабочий ход. Именно этот элемент технологической операции считается наиболее важным, так как он обеспечивает механическое удаление материала с поверхности для придания требуемой формы и размеров. Как правило, совершается перемещение инструмента относительно поверхности заготовки с заданными параметрами при определенном углублении режущей кромки в обрабатываемый материал. Также при рабочем ходе обеспечивается обработка поверхности для получения определенной шероховатости. Рабочий ход может быть продольным или поперечным, при этом определяется глубина и скорость резания, а также многие другие параметры. Как правило, он более продолжительный и точный, рассчитан на оказание серьезного механического воздействия на рабочий орган.
  5. Вспомогательный ход. Он также является неотъемлемой частью технологического процесса. Вспомогательный ход представлен однократным перемещением инструмента относительно заготовки, однако при этом не происходит изменение формы, размеров и других параметров заготовки. Применяется вспомогательный ход в большинстве случаев для смещения основных органов относительно заготовки. Примером можно назвать подвод инструмента в зону резания, а также фиксирующего элемента.
  6. Наладка. Перед непосредственным производством проводится наладка оборудования, а также применяемой оснастки. Наладка предусматривает установку всех приспособлений, выверку размера инструмента и их положения. Наладочному процессу уделяется довольно много внимания, так как неправильная фиксация инструмента может привести к весьма серьезным последствиям. Сложнее всего провести наладку станков с ЧПУ, так как они должны обеспечивать высокую точность обработки. Кроме этого, часто финишным этапом проводимой наладки становится контрольная обработка заготовки, в ходе которой определяется точность и другие моменты.
  7. Подналадка. Еще одним вспомогательным процессом можно назвать подналадку, которую выделяют крайне редко. Она предусматривает регулировку технологического оборудования или применяемой технологической оснастки. В некоторых случаях только после того, как было налажено производство можно определить неправильное позиционирование инструмента и технологической оснастки.
  8. Технологическое оборудование. Также встречаются различные средства обеспечения проводимой процедуры. В эту категорию относят материалы и заготовки, а также требуемую оснастку. Встречается в продаже просто огромное количество различной оснастки, которая существенно упрощает поставленную задачу по обработке заготовки самой различной формы и размеров.
  9. Технологическая оснастка. Это определение применяется для определения технологического оснащения, без которого провести обработку заготовки практически невозможно. Она может быть самой различной, подбирается в зависимости от того, какая процедура проводится.

В целом можно сказать, что технологическая операция является сложной процедурой, которая состоит из довольно большого количества различных частей

Виды техпроцессов

Классификация техпроцессов проводится по нескольким параметрам.

По критерию частоты повторения при производстве изделий технологические процессы подразделяют на:

  • единичный технологический процесс, создается для производства уникальной по конструктивным и технологическим параметрам детали или изделия;
  • типовой техпроцесс, создается для некоторого количества однотипных изделий, схожих по своим конструктивным и технологическим характеристикам. Единичный техпроцесс, в свою очередь, может состоять из набора типовых техпроцессов. Чем больше типовых техпроцессов применяется на предприятии, тем меньше затраты на подготовку производства и тем выше экономическая эффективность предприятия;
  • групповой техпроцесс подготавливается для деталей, различных конструктивно, но сходных технологически.

Пример типового технологического процесса

По критерию новизны и инновационности различают такие виды технологических процессов, как:

  • Типичные. Основные технологические процессы используют традиционные, проверенные конструкции, технологии и операции обработки материалов, инструмента и оснастки.
  • Перспективные. Такие процессы используют самые передовые технологии, материалы, инструменты, характерные для предприятий — лидеров отрасли.

По критерию степени детализации различают следующие виды технологических процессов:

  • Маршрутный техпроцесс исполняется в виде маршрутной карты, содержащей информацию верхнего уровня: перечень операций, их последовательность, класс или группа используемого оборудования, технологическая оснастка и общая норма времени.
  • Пооперационный техпроцесс содержит детализированную последовательность обработки вплоть до уровня переходов, режимов и их параметров. Исполняется в виде операционной карты.

Пример маршрутной карты

Пооперационный техпроцесс был разработан во время Второй Мировой войны в США в условиях нехватки квалифицированной рабочей силы. Детальные и подробные описания каждой стадии технологического процесса позволили привлечь к работе людей, не имевших производственного опыта и в срок выполнить большие военные заказы. В условиях мирного времени и наличия, хорошо обученного и достаточно опытного производственного персонала использование такого вида технологического процесса ведет к непроизводительным расходам. Иногда возникает ситуация, в которой технологи старательно издают толстые тома операционных карт, служба технической документации тиражирует их в положенном числе экземпляров, а производство не открывает эти талмуды. В цеху рабочие и мастера за многие годы работы накопили достаточный опыт и приобрели достаточно высокую квалификацию для того, чтобы самостоятельно выполнить последовательность операций и выбрать режимы работы оборудования. Таким предприятиям имеет смысл подумать об отказе от операционных карт и замене их маршрутными.

Существуют и другие классификации видов технологических процессов.

Что такое техпроцесс

Подавляющее большинство пользователей никогда не видели процессор, кроме, как на картинках. Некоторым посчастливилось увидеть его вживую, но не более, чем его теплораспределительную панель. Для сравнения, это как познакомиться с девушкой, но увидеть ее только в лыжном костюме. Самое интересное находится под этой пластиной. Именно там зарождается магия производительности.

Именно под пластиной расположен кристалл процессора. Он представляет из себя миллиарды даже не миниатюрных, а микроскопических транзисторов, расстояние между ними и определяется техпроцессом.

Обычно мы видим только крышку процессора, а под ней всегда самое интересное.

Самые современные процессоры (из тех, что поступили в промышленное производство) сейчас имеют 7-нанометровый (7-нм) техпроцесс. Такими технологиями на данный момент достаточно хорошо овладела тайваньская компания TSMC, которая производит чипсеты по заказу крупнейших мировых производителей, таких, как Apple, Huawei и Qualcomm. Последняя и вовсе обеспечивает львиную долю процессоров для производителей совершенно разных смартфонов на Android.

При этом, нельзя не отметить, что большее значение техпроцесса не означает, что на чипе будет меньше транзисторов. Это своим примером доказала Intel, у которой пока не очень хорошо с технологией 7 нанометров.

Принципы организации

Организация производственного процесса на предприятии основывается на различных принципах.  Основные принципы организации ПП следующие:

  1. Дифференциация.

Применяется на крупных предприятиях и предусматривает разделение всего процесса на операции, переходы и приемы. С помощью таких методов можно оптимизировать процесс, с учетом характеристик и особенностей оборудования, инструментов и трудовых ресурсов

Исходя из этого, работники концентрируются на отдельной операции, выполняя ее качественнее, быстрее, не распыляя внимание на выполнение других работ. Постепенный переход продукта от одной операции к другой, позволяет выполнять весь процесс производства, от начала до конца, без сложного обучения сотрудников

  1. Специализация.

Предусматривает закрепление за производственным участком отдельной ограниченной группы продуктов, производство которых предусматривает выполнение однородных работ, незначительно отличающихся друг от друга.

С помощью принципа специализации можно повысить эффективность производства, уменьшить количество производственных участков, объединяя похожие операции на одном. Также можно эффективнее использовать территорию предприятия, уменьшить затраты на оборудование и заработную плату работников. Также работников легче обучить выполнять новые операции, так как они похожи на те, которые выполнялись ими ранее. За счет этого себестоимость и производительность труда значительно растет.

  1. Параллельность.

Принцип параллельности предусматривает изготовление отдельных элементов готового продукта одновременно в разных цехах или отделах производственной линии. Это позволяет сократить время от начала обработки сырья до получения готового товара.

  1. Пропорциональность.

Предусматривает расчет ПП таким образом, чтобы пропускная способность различных элементов предприятия была на одном уровне. Это позволяет различным линиям работать в нормальном режиме, без простоев и переработок. Если это принцип не соблюдается, главная линия может простаивать из-за недостатка вспомогательных компонентов.

  1. Непрерывность.

Принцип непрерывности основывается на сведении к минимуму технологические остановки и паузы производственного процесса. Это позволяет значительно снизить время производства единицы продукции, а также повышение производительности труда и эффективности использования финансовых ресурсов. Данный принцип применяется на предприятиях массового производства, где объем заказов позволяет сохранять производственную норму на протяжении длительного периода. На некоторых предприятиях, где изготавливается товар сезонного характера, непрерывность производства может применяться в определенные периоды по определенной формуле.

  1. Ритмичность.

Этот принцип основан на принципе непрерывности, но предусматривает паузы. Применяется на предприятиях, объем производства которых сильно зависит от заказчиков. Позволяет быстро и эффективно увеличивать уровень выпуска и также быстро его снижать

Это очень важно, когда требуется удовлетворить требования заказчика к объему и качеству товара. Соблюдения этого принципа обеспечивает рациональность использования ресурсов и эксплуатации трудовых ресурсов

  1. Прямоточность.

Заключается в особой организации ПП и территории предприятия. Согласно этому принципу, предметы труда должны проходить минимальное расстояние за кратчайшее время между этапами обработки, и не должны возвращается на уже пройденный этап.  Это достигается на этапе планирования помещений предприятия.

  1. Автоматичность.

Основывается на автоматизации ПП, когда за счет автоматического оборудования снижаются затраты на оплату труда. Ручная работа заменяется специальным оборудованием и интеллектуальной работой операторов, следящими за системой показателей.

  1. Гибкость.

Этот принцип предусматривает возможность быстрого приспособления предприятия к изменениям экономической, политической и конкурентной ситуации. Обеспечивает быстрый, без значительных затрат, переход на изготовление похожей или кардинально другой продукции. Схема производственного процесса предусматривает то, что оборудование, в таком случае, легко переналадить, изменить его характеристики, убрать или добавить некоторые компоненты.

  1. Гомеостатичность.

Предусматривает организации ПП таким образом, чтобы в случае возникновения форс-мажорных или дестабилизирующих ситуации, система саморегулировалась и возвращалась в норму без значительного управленческого вмешательства.

https://youtube.com/watch?v=yXjmxPn_nsc

Это достигается за счет постоянного оперативного контроля и планирования, а также создания резервных запасов.

Так чего следует ждать?

Если поразмыслить, то получается, что в этом-следующем году следует ожидать значительного скачка в энергоэффективности, что позволит поднять частоту у топовых чипов и снизить требования к охлаждению у дешевых.

По видеокартам

В этом поколении у AMD с их есть все шансы составить конкуренцию NVIDA с их Pascal ведь их техпроцесс будет меньше, что может скомпенсировать повышенное тепловыделение карт на архитектуре GCN. Хотя помимо самого техпроцесса оба производителя представят новую архитектуру, что может продемонстрировать нам новый уровень быстродействия, как никак 4K стандарт набирает свои обороты. Если хотите узнать несколько интересных фактов о вашей видеокарте, то вам сюда.

По процессорам

Что касается процессоров, то здесь AMD обещают нам 40% прирост производительность на такт, что сулит здоровую конкуренцию с Intel, которые последнее время что-то обленились, их 5% прирост в Skylake расстроил многих фанатов. Также с таким скачком в техпроцессе Zen наконец может дать реальное подспорье Intel в энергоэффективности. Старые 28 нм не могли составить никакой конкуренции по этому параметру.

Также на данный момент уже известно, что процессоры Zen не заменят собой FX и Opteron, эти чипы не будут выпускаться далее 2016 года.

На микроархитектуру Zen возлагаются достаточно большие надежды, ведь к ее разработке приложил свою руку Джим Келлер. Он известен, как разработчик, создавший DEC Alpha 64-bit RISC, что затем вылилось в AMD K7. Им была создана архитектура AMD K8 после чего он ушел из AMD в 1999 году. Теперь же после возвращения в 2012, он вновь покидает «красных».

Просим нас простить за такой небольшой экскурс в историю, может кто-нибудь заинтересуется этой темой.

Выводы

Техпроцесс производства чипа имеет очень большое влияние на такие параметры, как энергопотребление, количество транзисторов и косвенно влияет на производительность.

Кроме апгрейда техпроцесса AMD и NVIDIA демонстрируют и новые архитектуры, что в сумме позволит совершить скачок в энергоэффективности и производительности.

Так что если вас мучает вопрос, о том, стоит ли подождать до новых выхода новых видеокарт и процессоров или покупать здесь и сейчас, мы склоняемся ко второму варианту. Исключение, наверное будет составлять случай с самыми мощными видеокартами, так как из-за большой площади чипа их выпуск может задержаться.

«Он вам не техпроцесс»

Изначально техпроцессом производители обозначали длину затвора у транзистора. Затвор — это один из элементов транзистора, которым контролируется поток движения электронов. То есть, он решает — будет 0 или 1.

В соответствии с законом Гордона Мура (одного из основателей Intel), количество транзисторов в чипах удваивается в два раза каждые два года. Этот закон был им выведен в 1975 году сугубо на основе личных наблюдений, но они оказались в итоге верны.

За последние годы процессоры прибавили в количестве транзисторов, производительности, но не в размерах

Когда индустрия перешла с техпроцесса 1000 нм на 700 нм, производители обратили внимание, что другие элементы транзистора не так податливы уменьшению, в отличие от затворов. Однако и уменьшать затвор тоже уже было нельзя — потому что в таком случае электроны смогли бы проходить сквозь него и вызывать нестабильную работу чипа. 

В 2012 году с переходом на 22-нанометровый техпроцесс инженеры придумали новый формат проектирование транзисторов — FinFET (от «fin» — рус. «Плавник»). Потому что он действительно стал похож на плавник рыбы.

Принцип заключается в увеличении длины канала, через который проходят электроны. За счёт этого в целом увеличивается площадь поверхности канала, что даёт возможность прохождения через него большему количеству электронов. С увеличением длины производители также получили возможность упаковки транзисторов с большей плотностью на один квадратный миллиметр.

Это, кстати, повысило производительность чипов за последние несколько лет, особенно в мобильных процессорах. Однако, из-за того что транзисторы перестали быть плоскими, став трёхмерными — это усложнило измерения их размера. Простите за тавтологию.

Разные производители, как правило, по-своему производят измерения. Например, Intel берут среднее значение двух размеров от наиболее распространённых ячеек. Кто-то делает иначе, однако в целом всё равно — нанометры, о которых говорят в графе «техпроцесс» являются чем-то усреднённым, но в целом значение практически полностью соответствует размеру одного транзистора

Но ещё, что важно в процессоре — это плотность размещения транзисторов

Определение и характеристика

ГОСТ дает научно строгое, но сформулированное слишком сухим и наукообразным языком определение технологического процесса. Если же говорить о понятии технологического процесса более понятным языком, то технологический процесс — это совокупность выстроенных в определенном порядке операций. Он направлен на превращение сырья и заготовок в конечные изделия. Для этого с ними совершают определенные действия, обычно выполняемые механизмами. Технологический процесс не существует сам по себе, а является важнейшей частью более общего производственного процесса, включающего в себя в общем случае также процессы контрактации, закупки и логистики, продажи, управления финансами, административного управления и контроля качества.

Схема технологического процесса

Технологи на предприятии занимают весьма важное положение. Они являются своего рода посредниками между конструкторами, создающими идею изделия и выпускающими его чертежи, и производством, которому предстоит воплощать эти идеи и чертежи в металл, дерево, пластмассу и другие материалы

При разработке техпроцесса технологи работают в тесном контакте не только с конструкторами и производством, но и с логистикой, закупками, финансами и службой контроля качества. Именно техпроцесс и является той точкой, в которой сходятся требования всех этих подразделений и находится баланс между ними.

Описание технологического процесса должно содержаться в таких документах, как:

  • Маршрутная карта — описание высокого уровня, в нем перечислены маршруты перемещения детали или заготовки от одного рабочего места к другому или между цехами.
  • Операционная карта – описание среднего уровня, более подробное, в нем перечислены все операционные переходы, операции установки-съемки, используемые инструменты.
  • Технологическая карта — документ самого низкого уровня, содержит самое подробное описание процессов обработки материалов, заготовок, узлов и сборок, параметры этих процессов, рабочие чертежи и используемая оснастка .

Технологическая карта даже для простого на первый взгляд изделия может представлять собой довольно толстый том.

Технологическая карта

Для сравнения и измерения технологических процессов серийного производства применяются следующие характеристики:

  • Цикл технологической операции — длительность (измеряется в секундах, часах, днях, месяцах) операции, повторяющейся с определенной периодичностью. Отсчитывается от момента начала операции до момента ее окончания. Длительность цикла не зависит от числа заготовок или деталей, обрабатываемых одномоментно.
  • Такт выпуска изделия – промежуток времени, через который выпускается это изделие. Рассчитывается как отношение времени, за которое выпускается определенное количество изделий, к этому количеству. Так, если за 20 минут было выпущено 4 изделия, то такт выпуска будет равен 20/4=5 минут/штуку .
  • Ритм выпуска – величина, обратная такту, определяется как число изделий, выпускаемых в единицу времени (секунду, час, месяц и т.п.).

В дискретном производстве такие характеристики технологических процессов не находят применения ввиду малой повторяемости изделий и больших сроков их выпуска.

Производственная программа — представляет собой список названий и учетных номеров выпускаемых изделий, причем для каждой позиции приводится объемы и сроки выпуска.

Производственная программа

Производственная программа предприятия складывается из производственных программ его цехов и участков. Она содержит:

  • Перечень выпускаемых изделий с детализацией типов, размеров, количества.
  • Календарные планы выпуска с привязкой к каждой контрольной дате определенного объема выпускаемых изделий.
  • Количество запасных частей к каждой позиции в рамках процесса поддержки жизненного цикла изделий.
  • Подробную конструкторско-технологическую документацию, трехмерные модели, чертежи, деталировки и спецификации.
  • Техусловия на производство и методики управления качеством, включая программы и методики испытаний и измерений.

Производственная программа является разделом общего бизнес-плана предприятия на каждый период планирования.

Средства выполнения технологических процессов

Технологический процесс существует сначала в головах технологов, далее он фиксируется на бумаге, а на современных предприятиях — в базе данных программ, обеспечивающих процесс управления жизненным циклом изделия (PLM). Переход на автоматизированные средства хранения, написания, тиражирования и проверки актуальности технологических процессов- это не вопрос времени, в вопрос выживания предприятия в конкурентной борьбе. При этом предприятиям приходится преодолевать сильное сопротивление высококвалифицированных технологов строй школы, привыкших за долгие годы писать техпроцессы от руки, а потом отдавать их на перепечатку.

Программа управления технологическим процессом

Современные программные средства позволяют автоматически проверять упомянутые в техпроцессе инструмент, материалы и оснастку на применимость и актуальность, повторно использовать ранее написанные техпроцессы целиком или частично. Они повышают производительность труда технолога и существенно снижают риск человеческой ошибки при написании техпроцесса.

Технологическое оборудование предназначено для установки, закрепления, ориентации в пространстве и подачи в зону обработки сырья, заготовок, деталей, узлов и сборок.

В зависимости от отрасли производства сюда входят станки, обрабатывающие центры, реакторы, плавильные печи, кузнечные прессы, установки и целые комплексы.

Оборудование обладает длительным сроком использования и может изменять свои функции в зависимости от использования той или иной технологической оснастки.

Технологическая оснастка включает в себя инструмент, литейные формы, штампы, приспособления для установки и снятия детали, для облегчения доступа рабочих к зоне выполнения операций. Оснастка дополняет основное оборудование, расширяя его функциональность. Она имеет более короткий срок использования и иногда специально изготавливается для конкретной партии изделий или даже для одного уникального изделия. При разработке технологии следует шире применять универсальную оснастку, применимую для нескольких типоразмеров изделия

Особенно это важно на дискретных производствах, где стоимость оснастки не распределяется на всю серию, а целиком ложится на себестоимость одного изделия

Инструмент предназначен для оказания непосредственного физического воздействия на материал заготовки с целью доведения ее формы размеров, физических, химических и других параметров до заданных в технических условиях.

Технолог при выборе инструмента должен принимать во внимание не только цену его покупки, но и ресурс и универсальность. Часто бывает, что более дорогой инструмент позволяет без его замены выпустить в несколько раз больше продукции, чем дешевый аналог

Кроме того, современный универсальный и высокоскоростной инструмент позволит также сократить время машинной обработки, что также прямо ведет к снижению себестоимости. С каждым годом технологи приобретают все больше экономических знаний и навыков, и написание техпроцесса из дела чисто технологического превращается в серьезный инструмент повышения конкурентоспособности предприятия.

Источник статьи: http://stankiexpert.ru/tehnologii/tekhnologicheskijj-process.html

О техпроцессе в компьютерном процессоре

Добрый день, уважаемые любители компьютерного железа. Сегодня мы поговорим о том, что такое техпроцесс в процессоре. На что влияет данная величина, как помогает при работе компьютера, за что отвечает и так далее.

Начать хотелось бы с того, что процессоры состоят из транзисторов. Под крышкой теплораспределителя находится сам кристалл ЦП на кремниевой подложке, в состав которого входит миллиарды миниатюрных транзисторов. О внутренностях CPU — в отдельной статье.

Их габариты настолько крошечные, что измеряются в нанометрах. Отсюда и берет свое начало величина.

Возьмем к примеру компанию AMD и ее процессорные ядра семейства Bulldozer и Liano, выполненные по нормам 32 нм. На площади кристалла размером всего 315 мм2 размещено 1,2 млрд транзисторов. Если сравнивать с более старой технологией 45 нм, в которой на подложке 346 мм2 находилось «только» 900 млн транзисторов – прогресс очевиден.

Уменьшение, а точнее оптимизация техпроцесса дает следующие преимущества:

  • повышение итоговой производительности при идентичных характеристиках двух устройств (первый и второй процессор имеют, к примеру, 4 ядра мощностью 3 ГГц);
  • снижение энергопотребления;
  • возможность добавить дополнительные рабочие инструкции;
  • повышение частот;
  • увеличение количества ядер на одной подложке (они занимают меньше места);
  • снижение затрат на изготовление чипов (на одной кремниевой болванке помещается больше процессоров).
  • Увеличение кэш-памяти процессора (больше места на кристалле для установки модуля)

На что влияет техпроцесс?

Недаром же производители гордятся новым достигнутым уровнем этого технологического процесса. Ведь он дает ощутимые преимущества:

  • уменьшение самих транзисторов ведет к увеличению их количества на единице площади, а это увеличение позволяет или поместить на подложку большее число транзисторов, что увеличивает производительность за счет расширения количества вычислительных блоков или уменьшить площадь самой подложки при сохранении прежнего числа транзисторов.
  • меньший размер транзисторов позволяет уменьшить их тепловыделение и энергопотребление. Это позволяет или увеличить частоту и количество вычислительных ядер без ущерба тепловыделению или просто уменьшить энергопотребление, что особо удобно для лэптопов.
  • вместе с 14 нм техпроцессом часто применяют FinFET транзисторы. Это такие транзисторы, которые имеют трехмерный затвор в форме плавника, что позволяет уменьшить размер транзистора и уменьшить потери тока и задержки. Их бывает несколько видов, но здесь про них рассказано не будет, так что если интересно, то сходите сюда.
  • переход на новый техпроцесс требует нового оборудования, что является недешевой операцией. Это сказывается в первую очередь на цене процессоров.
  • переход на новую стадию происходит не сразу. Технологию надо обкатать, поэтому первые чипы на новом технологическом процессе могут получаться далеко не с первого раза (влияет на цену). Особенно эта сложность растет с увеличением площади чипа, что не позволяет сразу после презентации нового техпроцесса сразу «лепить» быстрые многоядерные чипы с огромной площадью кристалла. Это в большей степени касается топовых видеочипов, где может применяться до 12 млрд транзисторов!
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector