Системы изменения фаз грм: типы и особенности работы
Содержание:
- Изменяемые фазы газораспределения
- Трехступенчатое регулирование фаз газораспределения
- Принцип работы:
- Устройство, принцип работы VVT
- Как проверить фазорегулятор
- Устройство и принцип действия механизма газораспределения
- Для чего необходима система изменения фаз?
- Возможные причины неисправности клапана
- Почему возникает?
- Технические характеристики G4NA 2 л/167 л. с.
- Детали клапанной группы
Изменяемые фазы газораспределения
Разберем основные варианты, используемые в современном автомобилестроении. Каждый из них доказал свою эффективность и проверен на сотнях тысяч машин. Какой из вариантов выбирать – непринципиально: при правильной эксплуатации ресурс примерно одинаков.
За счет поворота распредвала
Этот вариант используют ведущие автопроизводители – Тойота, Фольксваген, Дженерал Моторс, Вольво, Хонда, Киа и Рено. Первыми массово эксплуатируемыми авто в стране можно назвать БМВ с легендарной системой ВАНОС, в которой регулировалось положение распределительного вала. Особенности работы:
- На распредвале расположена гидравлическая муфта, которая при необходимости меняет угол узла, тем самым изменяя фазы газораспределения. Если распредвалов два, то и муфты может быть две.
- Узел расположен внутри корпуса ГБЦ. Управление муфтами реализовано за счет давления масла, поэтому в них есть масляные каналы. Регулировка происходит за счет электрогидравлических датчиков изменения фаз газораспределения или электромагнитных клапанов.
- Муфта изменения угла представляет собой ротор, который зафиксирован на распредвале и корпус, который одновременно служит шкивом ГРМ. Внутри узла есть масляные каналы и камеры. В них подается масло, за счет чего ротор меняет свое положение по отношению к корпусу. Это и обеспечивает корректировку вала.
- Управляет системой ЭБУ, на который подается вся необходимая информация о работе двигателя: данные с датчиков Холла, скорость вращения коленвала, температура и расход воздуха, температура антифриза. Анализируя показатели, ЭБУ корректирует распредвал так, чтобы обеспечить эффективную работу двигателя.
Этот вариант достаточно надежен. Проблемы чаще всего возникают с муфтами, которые со временем начинают работать некорректно или просто блокируются в одном положении и не регулируются. Чаще всего в таких ситуациях требуется замена вышедшего из строя узла.
Изменение фаз за счет разной формы кулачков на распредвале
Подобные системы используют Хонда, Митсубиси, Тойота и Ауди. Этот вариант даже проще в устройстве, но при этом дает хороший эффект. Его основные особенности:
- Регулируется система впрыска, поэтому на каждый цилиндр приходится по два впускных клапана. При этом управление ими производится с помощью 3 коромысел и 3 кулачков на распределительном валу (крайние кулачки маленькие, средний большой).
- При малых оборотах двигателя задействованы только крайние коромысла и кулачки. Фазы газораспределения короткие, что обеспечивает экономное расходование топлива.
- При увеличении оборотов привод системы (гидравлический блокирующий узел) блокирует все коромысла и работа производится за счет большого кулачка, так как он намного выше. За счет этого фазы газораспределения удлиняются и обеспечивается большая мощность.
В усовершенствованном варианте на распределительном валу три кулачка разной высоты. На малых оборотах открывается только один клапан. В среднем диапазоне задействуется уже два клапана, а при больших нагрузках работает средний кулачок самого большого размера.
Система регулировки за счет изменения высоты подъема клапанов
Была разработана в начале нулевых годов инженерами БМВ, потом ее стали использовать такие марки, как Пежо, Фиат, Тойота и Ниссан. Многие специалисты считают этот вариант самым совершенным, так как из конструкции можно исключить дроссельную заслонку, что улучшает регулировку подачи топливной смеси. Особенности:
- Состоит из сервопривода с червячным валом и возвратной пружиной, впускного и выпускного распредвала, червячной шестерни, эксцентрикового вала и элементов впуска и выпуска.
- Системой управляет ЭБУ, собирающий информацию с многочисленных датчиков, установленных на двигателе и в выпускном тракте. После обработки данных он передает сигнал на сервопривод, который через червячный вал воздействует на эксцентриковый вал. Далее через промежуточный рычаг и коромысло выставляется высота подъема впускных клапанов, что и обеспечивает правильную подачу топлива.
Этот вариант при всей своей сложности имеет большое преимущество: возможность регулировать фазы газораспределения максимально точно во всем диапазоне оборотов.
Использование двигателя с регулировкой фаз газораспределения позволит экономить топливо и наслаждаться отличной динамикой при езде. Лучше отдавать предпочтение именно таким вариантам.
Трехступенчатое регулирование фаз газораспределения
Такая система позволяет переключаться с малых кулачков на большой зависимо от режима работы ДВС. Переход между режимами достигается благодаря тому, что происходит срабатывание специального механизма блокировки. Указанный блокирующий механизм основан на гидравлическом приводе.
Когда мотор работает на низких оборотах и при незначительной нагрузке, впускные клапаны приводятся в действие малыми кулачками распределительного вала, фазы газораспределения в таком режиме имеют небольшую продолжительность (узкая фаза).
Если двигатель раскручивается до определенных оборотов, система управления активирует механизм блокировки. В результате происходит соединение коромысел малых и большого кулачков, что обеспечивает жесткость конструкции. Соединение происходит при помощи особого стопорного штифта, а усилие на впускные клапаны начинает поступать от единственного большого кулачка. Малые кулачки распредвала на высоких оборотах двигателя становятся неактивными.
Выход на режим максимальных оборотов заставляет впускные клапаны работать от центрального кулачка большого размера. Указанный кулачок имеет особый профиль, который специально подобран для достижения максимального подъема клапанов, что означает повышение отдачи от ДВС на мощностных режимах работы агрегата. Такой подход значительно расширил возможности управления параметрами ГРМ для эффективного регулирования работы двигателя на различных режимах.
Принцип работы:
Двигатель Renault F4P оборудован одним фазорегулятором, установленный в шкиве впускного вала. В фазорегулятор подается масло через электромагнитный клапан, установленный на крышке головки блока цилиндров. Расположение клапана на рисунке.
На клапан подается сигнал на открытие и подачу масла в канал, что позволяет регулировать фазу газораспределения. Электронный блок управления (ЭБУ) подает сигнал на степень открытия клапана. Степень открытия пропорциональна требуемому смещению фаз.
Масло поступает через центральное отверстие крыльчатки и отверстия для подъема плунжера. Под давлением плунжер смещается вниз и освобождает крыльчатку, под действием давления масла лопатки крыльчатки и фазорегулятора поворачиваются в сторону запаздывания закрытия впускных клапанов.
При отсутствии поступающего сигнала на электромагнитный клапан с ЭБУ лопатки крыльчатки возвращаются в исходное положение под действием вращения двигателя, плунжер блокирует всю систему в положении минимального запаздывания открытия впускных клапанов.
На автомобилях с моделью двигателя F4P фазорегулятор действует при соблюдении нескольких условий:
- Обороты выше 1500 об./мин.
- Давление во впускном трубопроводе выше 500 бар.
- Температура охлаждающей жидкости выше 30 градусов.
Многие производители используют данную систему на автомобилях. В их число входят Opel, Renault, Nissan и другие. Такие системы ставят как на бензиновае, так и на дизельные моторы. На последних система используется для снижения вибраций и шумов на всех оборотах.
Основные признаки выхода из строя фазорегулятора:
- затрудненный пуск двигателя;
- посторонний шум при работе двигателя;
- повышенный расход топлива;
- снижение приемистости мотора.
Если при запуске двигателя на холодную слышен металлический треск — то клапан не успевает накачать масло в фазорегулятор.
При запуске двигатель некоторое время работает, потом глохнет. Симптом связан с засорением сетки в электромагнитном клапане. В «САНРЕНО» механики смогут проверить загрязнения в сетке клапана и при необходимости дадут рекомендацию к чистке. Стоимость — 420 рублей.
При неисправности фазорегулятора появляется “Ошибка двигателя”. Что бы ее расшифровать, необходим специальный прибор. Чтение ошибок двигателя стоит 700 рублей.
Причины выхода из строя фазорегулятора:
- Масляное голодание. Возникает либо из-за недостаточного уровня, либо из-за засорения сетки электромагнитного клапана, который регулирует количество и давление. Мастера проверят уровень и при необходимости предложат его долить. Стоимость 1 литра масла, рекомендованного Renault, 350 рублей.
- Использование масла с характеристиками отличных от требуемых в спецификации мотора. Необходимо использовать рекомендованное заводом изготовителем с учетом климатических особенностей.
- Несвоевременная замена масла в двигателе. Это приводит к увеличению отложений в масляных каналах и на сеточку электромагнитного клапана, что приводит к голоданию фазорегулятора и быстрому выходу его из строя.
Устройство, принцип работы VVT
За угловое смещение распределительного вала отвечает фазовращатель, представляющий собой гидромуфту, работой которой управляет ЭБУ двигателя.
Конструктивно фазовращатель состоит из ротора, который соединен с распредвалом, и корпуса, наружная часть которого является шестерней распределительно вала. Между корпусом гидроуправляемой муфты и ротором находятся полости, заполнение которых маслом приводит к перемещению ротора, а, следовательно, и смещению распредвала относительно шестерни. В полости масло подается по специальным каналам. Регулировка количества поступающего через каналы масла осуществляется электрогидравлическим распределителем. Распределитель представляет собой обычный электромагнитный клапан, который управляется ЭБУ посредством ШИМ-сигнала. Именно ШИМ-сигнал делает возможным плавное изменение фаз газораспределения.
Система управления, в образе ЭБУ двигателя, использует сигналы следующих датчиков:
- ДПКВ (рассчитывается частота вращения коленчатого вала);
- ДПРВ;
- ДПДЗ;
- ДМРВ;
- ДТОЖ.
Статья в тему: Какой масляный фильтр для вашей машины лучше
Системы с разной формой кулачков
Ввиду более сложной конструкции, система изменения фаз газораспределения посредством воздействия на коромысла клапанов кулачков разной формы получила меньшее распространение. Как и в случае с Variable Valve Timing, автоконцерны используют разные обозначения для обозначения схожих по принципу работы систем.
- Хонда — Variable Valve Timing and Lift Electronic Control (VTEC). Если на двигателе одновременно используется и VTEC, и VVT, то такая система носит аббревиатуру i-VTEC.
- БМВ – Valvelift System.
- Ауди — Valvelift System.
- Тойота — Variable Valve Timing and Lift with intelligence от Toyota (VVTL-i).
- Митсубиши — Mitsubishi Innovative Valve timing Electronic Control (MIVEC).
Принцип работы
Система VTEC от Honda является, пожалуй, одной из самых известных, но и остальные системы работают по схожему типу.
Как вы можете увидеть из схемы, в режиме низких оборотов усилие на клапаны через коромысла передается набеганием двух крайних кулачков. При этом среднее коромысло двигается «вхолостую». При переходе в режим высоких оборотов давлением масла выдвигается запорный шток (блокирующий механизм), который превращает 3 коромысла в единый механизм. Увеличение хода клапанов достигается за счет того, что среднему коромыслу соответствует кулачок распредвала с наибольшим профилем.
Разновидность системы VTEC является конструкция, в которой режимам: низких, средних и высоких оборотов соответствуют разные коромысла и кулачки. На низких оборотах кулачком меньшей формы открывается только один клапан, в режиме средних оборотов два меньших по форме кулачка открывают 2 клапаны, а на больших оборотах наибольший кулачок открывает оба клапаны.
Как проверить фазорегулятор
Существует один простой метод, как можно проверить, работает фазорегулятор в двигателе или нет. Для этого необходимы лишь два тонких провода длиной около полутора метров. Суть проверки заключается в следующем:
Снять штекер с разъема клапана подачи масла в фазорегулятор и подключить туда подготовленные проводки.
Второй конец одного из проводов нужно подсоединить на одну из клемм аккумулятора (полярность в данном случае неважна).
Второй конец второго провода оставить пока в подвешенном состоянии.
Запустить двигатель на холодную и оставить работать на холостых оборотах
Важно, чтобы масло в движке было остывшим!
Подключить конец второго провода ко второй клемме аккумулятора.
Если двигатель после этого начинает «задыхаться», значит, фазорегулятор работает, в противном случае — нет!. Электромагнитный клапан фазорегулятора необходимо проверять по следующему алгоритму:. Электромагнитный клапан фазорегулятора необходимо проверять по следующему алгоритму:
Электромагнитный клапан фазорегулятора необходимо проверять по следующему алгоритму:
- Выбрав на тестере режим измерение сопротивления, замерьте его между выводами клапана. Если ориентироваться на данные руководства Меган 2, то при температуре воздуха +20°С оно должно находиться в пределах 6,7…7,7 Ом.
- Если сопротивление ниже — значит, имеет место замыкание, если больше — обрыв. В любом случае клапана не ремонтируют, а меняют на новые.
Измерение сопротивления можно выполнить и без демонтажа, однако нужно проверить и механическую составляющую клапана. Для этого понадобится:
- От источника питания 12 Вольт (АКБ авто) подайте напряжение дополнительными проводками на электрический разъем клапана.
- Если клапан исправен и чист, то при этом его поршень выдвинется вниз. Если напряжение убрать — шток должен вернуться в исходное положение.
- Далее нужно проверить зазор в крайних выдвинутых положениях. Он должен быть не более 0,8 мм (можно воспользоваться металлическим щупом для проверки зазоров клапанов). Если он меньше, то клапан нужно прочистить по описанному выше алгоритму.После выполнения чистки электрическую и механическую проверки следует, а затем принимать решение о замене. повторить.
Чтобы «продлить жизнь» фазорегулятору и его электромагнитному клапану рекомендуется чаще менять масло и масляные фильтра. Особенно, если машина эксплуатируется в тяжелых условиях.
Ошибка фазорегулятора
В случае, если на Рено Меган 2 в блоке управления сформировалась ошибка DF080 (цепь изменения характеристики распределительного вала, обрыв цепи), то нужно в первую очередь проверить клапан по приведенному выше алгоритму. Если он работает нормально, то в таком случае необходимо «прозвонить» по цепи провода от фишки клапана до электронного блока управления.
Чаще всего проблемы возникают в двух местах. Первое — в жгуте проводов, которые идут с самого двигателя на блок управления двигателем. Второе — в самом разъеме. Если проводка целая, то смотрите разъем. Со временем пины на них разжимаются. Чтобы их поджать нужно выполнить следующие действия:
- снять пластиковый держатель с разъема (сдернуть вверх);
- после этого появится доступ к внутренним контактам;
- аналогично нужно демонтировать заднюю часть корпуса держателя;
- после этого поочередно достать через заднюю часть один и второй сигнальный провод (действовать лучше по очереди, чтобы не перепутать распиновку);
- на освободившейся клемме необходимо при помощи какого-то острого предмета нужно поджать клеммы;
- собрать все в исходное положение.
Устройство и принцип действия механизма газораспределения
Газораспределительный механизм (ГРМ) состоит из:
- одного или двух кулачковых распределительных валов, на каждый из которых установлена своя шестерня;
- шестерни коленчатого вала;
- цепного или ременного привода.
Число зубьев шестерни распределительного вала всегда в 2 раза больше, чем у шестерни коленчатого вала.
Благодаря этому за два оборота коленчатого вала происходит лишь один оборот распределительного вала. Это позволяет открывать и закрывать клапаны головки блока цилиндров (ГБЦ) в зависимости от такта двигателя. Фазы газораспределения зависят от расположения кулачков распределительного вала. Поэтому на одновальных двигателях возможна только одновременная регулировка фаз впуска и выпуска.
В бензиновых и дизельных двигателях применяется механизм газораспределения клапанного типа, сейчас уже, в основном, с верхним расположением клапанов. Это значит, что клапаны находятся сверху, в головке блока цилиндров, как показано на рисунке 4.8.
Так, при верхнем расположении клапаны с пружинами и деталями их крепления установлены в направляющих втулках в головке блока цилиндров, в которой также отлиты впускные и выпускные каналы.
Рисунок 4.8 Головка блока цилиндров с газораспределительным механизмом.
Усилие от кулачков распределительного вала, расположенного здесь же – в головке блока, к клапанам передается с помощью толкателей и/или коромысел. Коромысла установлены шарнирно на оси, закрепленной на головке блока. Клапаны на головке закрыты крышкой.
О тепловом зазоре
Между стержнем клапана, толкателем или концом коромысла газораспределительного механизма должен быть зазор (так называемый тепловой зазор), который необходим для компенсации удлинения стержня клапана при его нагревании без нарушения плотности посадки клапана в гнезде. Другими словами, если бы не было зазора, грубо говоря, между кулачком распредвала и клапаном, то от нагрева до высокой температуры, клапан увеличился бы в длину и перестал бы плотно прилегать к седлу в головке блока цилиндров.
Величина зазора для двигателей разных марок устанавливается для впускных клапанов в холодном состоянии в пределах 0,15—0,30 мм, а для выпускных клапанов, подвергающихся большему нагреву, — в пределах 0,20—0,40 мм. Однако же, у некоторых производителей зазор может быть таков, что не попадет в указанные диапазоны.
Для регулировки величины этого зазора в механизме предусмотрены регулировочные устройства. Хотя слово «устройство» слишком громкое для регулировочного болта и стопорной гайки (Рисунок 4.9) или шайб различной толщины (Рисунок 4.10).
Рисунок 4.10 Регулировка теплового зазора с помощью шайб(А – головка блока цилиндров без распределительного вала;Б – головка блока цилиндров с распределительным валом).
Сейчас очень распространена конструкция с гидравлическими компенсаторами, которые под давлением масла подводят коромысло или толкатель к кулачку распределительного вала, убирая тем самым негативное последствие теплового зазора, а именно — удар кулачка о толкатель во время работы. Но стоит упомянуть, что установка гидрокомпенсаторов удорожает конструкцию головки блока цилиндров и повышает свои требования к качеству используемого моторного масла и к частоте его замены, поскольку масляные каналы компенсатора могут забиваться продуктами износа.
ПримечаниеБолее подробно о гидрокомпенсаторах приведено ниже.
ПримечаниеПочему предварительно? Потому что для целостности восприятия данного раздела о распределительном вале необходимо сказать несколько слов, а более подробное описание данной детали будет дано ниже.
Правильность чередования различных тактов в цилиндрах двигателя достигается соответствующим расположением кулачков на распределительном валу, а также правильностью установки зацепления распределительных шестерен/шкивов с приводной шестерней/шкивом коленчатого вала.
Для чего необходима система изменения фаз?
Данное дополнение делает двигатель на порядок сложнее. Со временем неизбежно возникают неисправности, что пугает многих автомобилистов. На самом деле двигатели с изменяемыми фазами намного лучше по целому ряду причин:
- Ресурс двигателя увеличивается. За счет того, что топливо подается правильно, при сгорании не образуется слишком сильного взрыва, повреждающего поверхность цилиндра и поршня. Все агрегаты работают на порядок мягче, что позволяет служить им дольше.
- Отдача мотора улучшается во всем диапазоне оборотов. Благодаря настройкам фаз газораспределения двигатели объемом 1,6 л и даже меньше выдают свыше 100 лошадиных сил, что раньше было невозможно.
- Машина намного лучше работает на холодную. За счет настройки положения клапанов мотор даже при отрицательной температуре подбирает оптимальный режим и нагревается за минимальное время.
Система доказала свою эффективность, поэтому используется на большинстве современных автомобилей. Причем реализуют ее разными способами. Есть три основных варианта.
Возможные причины неисправности клапана
Как Проверить Клапан Адсорбера На Калине Основных причин неисправностей клапана не так уж и много. Можно выделить две, которые встречаются особенно часто. Так, VVTI-клапан может выходить из строя по причине того, что есть обрывы в катушке. В данном случае элемент не сможет верно реагировать на передачи напряжения. Диагностика неисправности легко осуществляется при помощи проверки измерения сопротивления обмотки катушки датчика.
Вторая причина, по которой клапан VVTI (Toyota) работает неправильно или же не работает вообще — это заедания в штоке. Причиной таких заеданий может быть банальная грязь, которая со временем скопилась в канале. Также возможно, деформирована уплотняющая резинка внутри клапана. В этом случае восстановить механизм очень просто — достаточно очистить грязь оттуда. Это можно сделать с помощью отмачивания или вымачивания элемента в специальных жидкостях.
Почему возникает?
Ошибка о неисправности сигналов датчика положения РВ и КВ возникает и при наличии нарушений в разных системах автомобиля. Среди всех существующих проблем часто встречаемыми считаются:
- Изменение угла фазы газораспределения ДВС;
- Засоренность масляных каналов;
- Неисправность муфты;
- Загрязненность или неполадки с клапаном;
- Потеря мощности или частичные дефекты с ГРМ.
В некоторых случаях ошибка возникает ввиду выхода из строя самого электронного датчика КВ и РВ.
Проблемы с самим управляющим клапаном и контактами сказываются на достоверности данных о положении РВ и КВ.
Способы устранения: что делать?
При появлении ошибки, владельцу автомобиля, необходимо точно определить причину. Только после этого рекомендуется правильно определить последовательность своих действий и четко разобраться с тем, как поступать в той или иной ситуации. Зная самые распространенные источники неисправности, можно быстро и что самое главное без простоя авто справиться с проблемой. В большинстве своем ошибка сигнализирует о следующих проблемах:
- Поломка датчиков, считывающих положение валов;
- Неисправность датчика холостого хода;
- Нарушения в работе датчика фаз.
Часто проблема кроется в неосмотрительности водителя транспортного средства. При несвоевременной замене масла могут произойти серьезные проблемы с муфтой. Случаев, когда она заклинивает достаточно. Происходит это в основном из-за обильной выработки и как следствие засоренности масляных клапанов мусором.
Смотрите видео о том, почему возникает ошибка Р0016.
Опубликовано: 16 октября 2021
Технические характеристики G4NA 2 л/167 л. с.
При проектировании в G4NA заложена рядная схема двигателя атмосферного типа с 4 цилиндрами. При перескакивании звеньев или обрыве цепи мотор гнет клапана из-за соударения их штоков с поршнями. Цековки на торцах поршней проектировщиками не предусмотрены. Ресурс 200 000 км пробега и высокая надежность цепи считаются достаточными мерами для обеспечения безопасности штоков клапанов.
Основной особенностью движка G4NA стала разработка силами концерна HKAG без посторонней помощи. Получился ДВС с длинным ходом, поскольку соотношение хода поршня к диаметру цилиндра 97/81 мм здесь больше единицы. Сохранилась схема ГРМ OHC 16V, система регулировки фаз CVVT на обоих распредвалах и цепной привод механизма газораспределения.
Схема работы гидрокомпенсаторов
Добавились гидрокомпенсаторы с рокерами, произведена частичная модернизация. Улучшено навесное оборудование и его компоновка на корпусе двигателя. Например, впускной коллектор стал пластиковым с изменяемой геометрией каналов.
Гильзы цилиндров внутри дюралевого блока как были, так и остались тонкостенными стальными с «мокрой» посадкой. Фактически увеличить мощность и произвести глобальное улучшение параметров разработчикам не удалось – крутящий момент и мощность, объемы цилиндров и камер сгорания остались на прежнем уровне.
После доработок конструкции технические характеристики G4NA выглядят таким образом:
Изготовитель | Hyundai |
Марка ДВС | G4NA |
Годы производства | 2006 – … |
Объем | 1999 см3 (2,0 л) |
Мощность | 123 кВт (167 л. с.) |
Момент крутящий | 201 Нм (на 4200 об/мин) |
Вес | 117 кг |
Степень сжатия | 10,3 |
Питание | инжектор |
Тип мотора | рядный бензиновый |
Зажигание | DIS-4 |
Число цилиндров | 4 |
Местонахождение первого цилиндра | ТВЕ |
Число клапанов на каждом цилиндре | 4 |
Материал ГБЦ | сплав алюминиевый |
Впускной коллектор | пластиковый |
Выпускной коллектор | литой чугунный |
Распредвал | встроен механизм CVVT |
Материал блока цилиндров | алюминиевый сплав |
Диаметр цилиндра | 81 мм |
Поршни | алюминиевые |
Коленвал | 5 опор, 8 противовесов |
Ход поршня | 97 мм |
Горючее | АИ-95 |
Нормативы экологии | Евро-5 |
Расход топлива | трасса – 6,1 л/100 км смешанный цикл 7,5 л/100 км
город – 9,8 л/100 км |
Расход масла | максимум 0,6 л/1000 км |
Какое масло лить в двигатель по вязкости | 5W30, 5W40, 0W30, 0W40 |
Какое масло лучше для двигателя по производителю | — |
Масло для G4NA по составу | синтетика, полусинтетика |
Объем масла моторного | 4,2 л |
Температура рабочая | 95° |
Ресурс ДВС | заявленный 250000 км реальный 250000 км |
Регулировка клапанов | гидротолкатели |
Система охлаждения | принудительная, антифриз |
Объем ОЖ | 6,9 л |
Помпа | Optima III 2510041700 |
Свечи на G4NA | Bosch 0242236578, 0242236577 иридий, 0242229791 платина-иридий, Champion EON9/286, |
Зазор свечи | 1,1 мм |
Цепь ГРМ | 243212Е000 |
Порядок работы цилиндров | 1-3-4-2 |
Воздушный фильтр | Mando/MAF086 |
Масляный фильтр | Bosch 045103316, Borg&Beck BFO4198, Blue Print ADG02144, AMC HO-701 |
Маховик | 232002E000 |
Болты крепления маховика | М12х1,25 мм, длина 26 мм |
Маслосъемные колпачки | Ajusa 57047000 |
Компрессия | от 13 бар, разница в соседних цилиндрах максимум 1 бар |
Обороты ХХ | 750 – 800 мин-1 |
Усилие затягивания резьбовых соединений | свеча – 31 – 39 Нм маховик – 62 – 87 Нм
болт сцепления – 19 – 30 Нм крышка подшипника – 68 – 84 Нм (коренной) и 43 – 53 (шатунный) головка цилиндров – три стадии 20 Нм, 69 – 85 Нм + 90° + 90° |
Детали клапанной группы
К клапанной группе относятся клапан, направляющая втулка клапана, клапанная пружина с опорной шайбой и деталями крепления (они же — «сухари»). Все описанное приведено на рисунке 4.13.
Клапан служит для закрытия и открытия впускных или выпускных каналов в головке блока цилиндров. Основными элементами клапана являются тарелка и стержень.
Тарелка клапана имеет шлифованную конусную рабочую поверхность — фаску (обычно под углом 45°), которой клапан плотно притерт к седлу.
Стержень клапана отшлифован и проходит через направляющую втулку. На конце стержня клапана имеется канавка или отверстие для крепления опорной шайбы пружины. Разноименные клапаны имеют тарелки различных диаметров (зачастую, больший — у впускного клапана) или отличаются специальными метками.
Рисунок 4.13 Клапанный механизм.
Седло клапана (на рисунке 4.13) представляет собой металлическое кольцо цилиндрической формы с обработанной под углом 45 градусов рабочей поверхностью (той самой, к которой прилегает тарелка клапана). Седла клапанов запрессованы в головку блока цилиндров. Существуют конструкции с заменяемыми седлами и с седлами, запрессованными наглухо.
Направляющая втулка, в которой клапан устанавливается стержнем, обеспечивает точную посадку клапана в седло. Втулки запрессовывают в головку цилиндров.
Рисунок 4.14 Клапан.
Клапанная пружина удерживает клапан в закрытом положении, обеспечивая плотную его посадку в гнезде, а также создает постоянное прижатие толкателя к поверхности кулачка распределительного вала. Пружину надевают на выходящий из втулки конец стержня клапана и закрепляют на нем в сжатом состоянии с помощью опорной шайбы с коническими разрезными сухарями, которые входят в выточку на стержне клапана. Иногда на клапан устанавливают две пружины: пружину меньшего диаметра — внутрь пружины большего диаметра. Это делается для того, чтобы избежать резонанса пружины на определенных частотах работы двигателя, а также для подстраховки на случай поломки пружины. Часто применяются пружины с переменным шагом витков. Это исключает вероятность возникновения вибрации пружины и ее поломки при большом числе оборотов коленчатого вала двигателя. При установке двух пружин их подбирают таким образом, чтобы направление навивки их витков было выполнено в разные стороны, что также устраняет опасность возникновения резонансных колебаний пружин.
Для ограничения количества масла, поступающего в направляющую втулку, и устранения подсоса масла в цилиндр через зазоры во втулке на верхних впускных клапанах под опорной шайбой ставят маслосъемные колпачки.
Толкатель служит для передачи осевого усилия от кулачка распределительного вала на стержень клапана или на штангу. Дело в том, что передавать усилие от кулачка распредвала лучше именное через промежуточное звено – толкатель. Поскольку при длительной работе элементы клапанного механизма изнашиваются и, когда приходит время замены чрезмерно износившихся деталей, проще заменять небольшой толкатель, нежели целый распредвал или клапаны.
Рисунок 4.15 Головка блока цилиндров с элементами газораспределительного механизма.
Как было отмечено выше, сейчас получили широкое распространение так называемые гидрокомпенсаторы. «Гидро», потому что работают за счет давления моторного масла, а «компенсаторы», так как компенсируют или, проще говоря, сводят на нет зазор между кулачком распределительного вала и толкателем во время работы.
Толкатели в большинстве двигателей устанавливают без втулок непосредственно в отверстия приливов головки блока цилиндров. В некоторых двигателях для толкателей имеются направляющие втулки, отлитые секцией на несколько цилиндров.
Коромысло. Изменяет направление передаваемого движения. Устанавливают зачастую, когда распределительный вал один, а клапанов на цилиндр два или четыре, но расположены они особым образом (смотрите рисунок 4.16). Коромысла устанавливают на бронзовых втулках или без втулок на осях, которые при помощи стоек закреплены на головке блока. Одно плечо коромысла располагается над стержнем клапана, а другое — под или над кулачком распределительного вала. Для регулировки зазора между стержнем клапана и коромыслом в конец коромысла вкручен регулировочный винт с контргайкой.
Рисунок 4.16 Привод клапанов через коромысло.