Двигатель 1.9 tdi volkswagen — особенности конструкции, надежность и ресурс. отзывы владельцев и специалистов

Содержание:

Характерные проблемы: мнение владельцев

Обычно владельцы сталкиваются с несколькими типичными проблемами для данного ДВС.

Это износ клапана EGR (клапана рециркуляции отработавших газов). Проявляется проблема повышенным «масложором», дымной работой мотора, реже — глухим стуком из-под капота. Решается такая ситуация устранением сопутствующих неисправностей и заменой самого клапана EGR.

Еще одна причина необычно шумной работы мотора кроется в изношенных гидравлических толкателях клапанов. Лучше менять их на новые, не дожидаясь проблем, вместе с заменой привода ГРМ.

Если водитель слышит характерный металлический звон, когда глушит мотор — двойному маховику сцепления пришел конец. Реже, но бывает, что звон изношенного маховика слышен на холостых оборотах. Придется менять комплект сцепления целиком. Правда, не все из модификаций 1.9 TDI оснащены двухмассовым маховиком в принципе.

Внезапная потеря тяги двигателем — признак «умирания» турбины. Решение проблемы зависит от результата диагностики. В худшем случае, турбокомпрессор под замену.

Другая беда, связанная с нестабильной работой мотора и потерей мощности — снижение компрессии в цилиндрах. Если снять ГБЦ и заменить прогоревшие седла клапанов, жизнь турбодизелю можно продлить еще на пару десятков тысяч километров.

Одна из самых серьезных гипотетических поломок связана с тем, что ролик натяжения приводного ремня навесного оборудования (генератора, ГУРа и т.п.) изламывается. Дальше цепь катастрофических событий: ремень обрывается, наматывается на шкив коленвала, может попасть под привод ремня ГРМ и привести к его проскоку. Что вызывает роковую встречу поршней и клапанов.

Поэтому важно регулярно проверять ролик — он не должен начать колебаться, а ремень должен быть достаточно натянут, а также нужно вовремя ремонтировать генератор. Если натяжитель перекошен, его нужно менять на оригинальный

Вообще, лучше менять оригинальный ролик каждую замену ремня ГРМ. Если он уже начал колебаться, у владельца есть примерно 20 тыс. км на решение вопроса.

Вторичные двигатели

Электродвигатели

В 1834 году русский учёный Борис Семёнович Якоби (так писалось его имя в русской транскрипции) создал первый пригодный для практического использования электродвигатель постоянного тока.

В 1888 году сербский студент и будущий великий изобретатель Никола Тесла высказал принцип построения двухфазных двигателей переменного тока, а год спустя русский инженер Михаил Осипович Доливо-Добровольский создал первый в мире 3-фазный асинхронный электродвигатель, ставший наиболее распространённой электрической машиной.

Пневмодвигатели и гидромашины

Пневмодвигатели и гидромашины, соответственно, работают от сетей (баллонов) высокого давления воздуха или жидкости преобразуя гидравлическую (пневматическую) энергию насосов. Их широко применяют в качестве исполнительных механизмов в различных устройствах и системах. Так, созданы пневмолокомотивы (особенно пригодны для работ во взрывоопасных условиях, например в шахтах, где тепловые двигатели не применимы из-за температурных условий, а электрические — из-за искр при коммутации), с помощью гидромашин осуществляется привод гусениц в некоторых типах тракторов и танков, перемещение рабочих органов бульдозеров и экскаваторов. Всё разнообразнее конструкции экологически чистых городских автомобилях на пневмоприводах, предлагаемых инженерами разных стран. Вторичные двигатели играют большую роль в технике, однако их мощность относительно невелика. Их также широко применяют и в миниатюрных и сверхминиатюрных устройствах.

Основная угроза

По мнению обывателей, основной конструктивный недостаток 1.4 TDI — количество цилиндров.

Если в моторе с четным количеством цилиндров силы инерции движущихся элементов направлены в разные стороны и тем самым балансируют друг друга, то в 3-хцилиндровых агрегатах этого не происходит, что приводит к шумной «некультурной» работе и излишним вибрациям.

Чтобы сбалансировать работу трехцилиндровых ДВС, в них применяются различные схемы балансировки. В 1.4 TDI это дополнительный вал с двумя противовесами, который приводится цепью от коленвала и вращается в противоположном ему направлении. 

Теоретически, при такой системе хорошо бы спустя 200-250 тыс. км проводить балансировку двигателя с учетом изменения зазоров коленвала и балансировочного вала. Но такую процедуру проводят штучные специалисты.

Опять же, в теории, такая ситуация «плохо отбалансированного» (с учетом выработки) двигателя приводит к необъяснимым штатными причинами поломкам коленвала.

Поэтому эксперты рекомендуют, если есть выбор, отдавать предпочтение двигателям с четным количеством цилиндров. 

Но что касается именно 1.4 TDI производства Volkswagen, он среди сервисменов зарекомендовал себя достаточно надежным из 3-хцилиндровых «собратьев».

Основная причина обращения владельцев 1.4 TDI в сервис — не проблемы с коленвалом, а банальные поломки турбины и выход из строя насос-форсунок.

Система подачи топлива в 1.4 TDI явно проигрывает в сравнении с Common-Rail. Насос-форсунки очень привередливы к качеству топлива и моторного масла.

Если предыдущий владелец решил, что масло стоит выбрать по совету, а не рекомендованное производителем, и заправлялся непонятно каким ДТ, вероятность проблем у владельца нового очень высока.

Поэтому выбирать 1.4 TDI стоит только если ездить надо много, а история обслуживания б/у авто с большим пробегом известна в подробностях.

Итого

1.4 TDI PD — компактный и экономичный турбодизель, предназначенный для передвижения по городу. В качестве альтернативы можно рассматривать младший в семействе 1.2 TDI, но он не сильно выигрывает по экономичности расхода топлива, а в плане обслуживания и ремонта более привередлив.

В покупке автомобиля с большим пробегом с 1.4 TDI есть смысл только если известна полная история его обслуживания, потому что ремонт мотора в случае серьезных проблем больно ударит по бюджету нового владельца.

Не пропустите обзоры других дизельных двигателей VAG:

  • 1.9 TDI — читайте здесь
  • 2.0 TDI — читайте здесь
  • 1.6 TDI — читайте здесь.

Комплектации, опции, функции

«Пассат В6» имеет множество комплектаций. В зависимости от версии в оснащение входит:

  • шесть подушек безопасности;
  • полный электропакет;
  • мультируль;
  • мультимедиа с дисплеем и навигацией;
  • климат-контроль;
  • круиз-контроль;
  • ксеноновые фары;
  • комбинированный салон кожа/алькантара с кожаным рулём и КПП.

В целом набор опций у «Пассата В6» такой же, как у автомобилей средней ценовой категории. Но набор функций уникальный

Николай: «Водительский ключ откидной в одном моноблоке с тремя кнопками: отпирание/запирание центрального замка и открытие багажника. Но если нажать и держать кнопку разблокировки дверей, то опустятся все боковые стекла. Кнопка блокировки дверей, соответственно, закрывает окна. Мелочь, а иногда удобно, если уже вышел и вспомнил про забытое открытое окно.

Внутри багажника есть рукоятка отпирания крышки изнутри. Благодаря ей случайно забытый в багажнике человек сможет сам выбраться из «засады». Шутка, но мало ли…

Также в машине есть система помощи при перестроении на дороге. Если наклонить ручку поворотника влево или вправо, то желтые лампочки моргнут три раза. После перестроения отключать вручную поворотники не надо.

Стеклоочистители, помимо множества режимов работы, имеют одну полезную функцию. Если вы хотите очистить ветровое стекло «незамерзайкой», система кондиционирования перейдёт в режим забора воздуха из салона, чтобы неприятные запахи незамерзающей жидкости не попали в салон.

В багажнике имеется 12V прикуриватель, а для задних пассажиров доступна розетка 220 V с инвертором на 150 Вт. Этого хватит для зарядки ноутбука или просмотра DVD-плеера. Как видим, в салоне есть всё для удобства людей.

Ещё одна редкая заводская

функция — возможность «прикуриться» от аккумулятора другой машины, когда свой сел. Защита большого напряжения исключает поломку главного компьютера «Пассата». Обычно заводом запрещены такие манипуляции».

Вот такие педантичные немцы! Всё у них предусмотрено, рассчитано и доступно для понимания!

Также читайте: Практично или комфортно: BMW 5 против Audi A4

Общая оценка преимуществ TDI

Среди выявленных достоинств силовой установки образца Turbocharged Direct Injection нельзя не обратить внимания на следующее:

  • мощность;
  • экономичность;
  • компактность;
  • экологичность.

Этот набор определился не сразу и даже не после появления на рынке в 1980 г. Audi 80 с TDI под капотом, а лишь после многочисленных доработок и улучшений, что привело к запуску в серию в 1989 г. нового мощного турбодизеля, во многом не уступающего бензиновым агрегатам.

Специалисты признают, что TDI – один из лучших современных дизелей, эффективность которого определяется исходя из соотношения исходной мощности и крутящего момента на единицу объема цилиндра и расходованного топлива.

Электромагнитный клапан ограничения давления наддува N75

Электромагнитный клапан ограничения давления наддува является электропневматическим устройством. С помощью этого клапана регулируется разрежение, посредством которого работает механизм управления направляющих лопаток.

Последствия отказа

При выходе из строя этого клапана не создается разрежение, необходимое для работы вакуумного привода. Пружина вакуумного привода устанавливает регулировочную тягу в такое положение, когда направляющие лопатки турбины ориентируются под большим углом (аварийный режим). При низких оборотах двигателя и, следовательно, при низком давлении ОГ возможно только низкое давление наддува. Мощность двигателя недостаточна, и активная регенерация сажевого фильтра невозможна.

Технические различия TDI

Заслуживающий уважения КПД и экономичный расход топлива показывает на AUDI v12. За счет повышенного давления на впрыске, которое достигает 2050 бар, наблюдается высокая эффективность установки. Если сравнивать с другими моделями, то их показатели не превышают 1350 бар.

Всем известно, что за поддержку общего давления в магистрали отвечает ТНВД. По сигналу электронного блока управления пьезоэлектрические форсунки производят дозированный впрыск при затратах по времени менее чем 0,2 мс.

Аккумуляторная система подачи Common rail осуществила путь повышения эффективности дизелей. Благодаря которой механизм впрыскивания становится независимым от угла поворота коленвала и рабочего режима мотора.

Под повышенным давлением при работе с незначительными нагрузками создаются предпосылки для впрыскивания топлива в цилиндр. По сравнению с простой системой подачи топлива, система Common rail превосходит ее по ремонтопригодности. Ее наличие требует от качества горючего повышенных требований, в чем простая система проигрывает.

По числу нетипичных особенностей моторов TDI можно скорректировать несколько моментов:

Комплексный контроль устройства топливного впрыска зародился благодаря связыванию инжектора с насосом. За счет этого при модифицировании рабочего режима повысился крутящий момент.

Высокие ударные нагрузки отсутствуют при сгорании топлива, это связано с низким уровнем шума двигателя.

В выхлопах концентрация оксида азота невысокая. В связи с этим показатель токсичности является приемлемым, что не скажешь о других типах двигателей. В среде себе подобных данный агрегат по праву считается наиболее экологичным.

Двигатель HDI

Аббревиатура HDI присваивается моторам, которые базируются на технологии Common Rail (разработанная компанией Bosch в 1993 году). Сам же мотор и технологию HDI разработал всемирно известный автомобильный концерн PSA Peugeot Citroen. HDI, как я уже говорил, принадлежит к линейке двигателей с прямым впрыском, характерные отличия уменьшенный расход топлива на ~15%, снижение шумности на ~10дБ, при одновременном повышении мощности на целых ~40%. Моторы с приставкой HDI считаются более выносливыми и “живучими”.

Двигатель TDI

Сокращение TDI, пожалуй, самое популярное и легко расшифровываемое. Первая буква “T” в этой аббревиатуре обозначает наличие турбонаддува, который позволяет получить серьезную прибавку мощности. Турбомотор обладает всеми присущими турбированным моторам свойствами, он более экономичен, имеет более чистый выхлоп, при этом более дорогой в обслуживании. Кроме того, мало кто знает, что большинство турбин, устанавливаемых на турбодвигателя, рассчитаны на ~150-200 тыс. км. пробега, и это при том, что сам мотор, как правило, “миллионник”.

Двигатель SDI

Моторы класса SDI отличаются продолжительностью “жизни” и простотой конструкции. Большие пробеги для SDI — не проблема, моторы очень выносливы и надежны, однако если ремонт все же потребуется, то стоимость его вряд ли вас обрадует.

Двигатель CDI

Мотор с шильдиком CDI — разработка “Mercedes”, которая базируется на той же технологии Common Rail, что и вышеперечисленные силовые агрегаты. Моторы линейки CDI более требовательны к качеству топлива (часто “компостирует мозги” топливная, форсунки и т. д.), при этом они весьма экономны и динамичны на дороге.

Ну вот, собственно, и все. Надеюсь, доходчиво объяснил в чем разница между HDI, TDI, SDI, и CDI, теперь вы легко сможете сориентироваться и выбрать для себя подходящий по типу и классу двигатель

Спасибо за внимание и до новых встреч на Вопрос Авто

Турбореактивный двигатель TDI-J85 для крылатых ракет Grey Wolf

Двигатель TDI-J85 и связанная с ним недорогая крылатая ракета были спроектированы и изготовлены Northrop Grumman в сотрудничестве Technical Directions. Двигатель может также приводить в действие и другие беспилотные летательные аппараты.


Турбореактивный двигатель TDI-J85 для крылатых ракет испытывает Исследовательская лаборатория ВВС США. tdi-engines.com

Gray Wolf (Серый волк) — это ведомство, подчиненное министру обороны США и руководящее производством прототипов и демонстрационных образцов недорогих крылатых ракет с дальностью полета более 460 км.

Начальная тестовая кампания TDI-J85 включала в себя несколько запусков двигателя в полете и работу на большой высоте.

«Успех этого теста значительно повышает нашу уверенность в эффективности двигателя и систем оружия в целом», — говорится в заявлении полковника ВВС США Гарри Хааса, главы Управления по боеприпасам AFRL, сокращенно AFRL/RW. Он утверждает, что TDI-J85 является первым в своем классе и ценовом сегменте, успешно работающим на высоте.


Турбореактивный двигатель TDI-J85. tdi-engines.com

TDI-J85 — турбореактивный двигатель весит всего 28 фунтов (12,7 кг) . Для сравнения: турбовентиляторный двигатель Williams F107 , оснащенный крылатой ракетой воздушного базирования AGM-86B (ALCM) и вариантами крылатой ракеты Tomahawk Land Attack, относится к классу тяги в 600 фунтов и весит около 67 фунтов (30,39 кг).

«Двигатель TDI-J85 прошел успешную летно-испытательную кампанию, кульминацией которой стало несколько запусков двигателей в полете и работа на большой высоте. Двигатель оправдал ожидания по характеристикам тяги и превзошел ожидания по эффективности использования топлива», — говорится в пресс-релизе AFRL. «Испытанные двигатели накопили достаточное время работы в полете, создавая уверенность в долговечности конструкции».

«Конструкция двигателя была ориентирована на доступность и технологичность, что позволяет увеличить производство. Результаты испытаний подтвердили работоспособность двигателя», — продолжил он. «Это первый двигатель в своем классе и ценовой категории, успешно работающий на высоте».

Особо подчеркивается, что с двигателем TDI-J85, топливная нагрузка может быть уменьшена, чтобы освободить место для более крупных боеголовок или других полезных нагрузок.

В настоящее время ВВС заявляют, что они стремятся продемонстрировать экспериментальную конструкцию недорогой крылатой ракеты, которая может «летать на расстояниях, превышающих 250 морских миль (463 км)».


Крылатая ракета Gray Wolf. tdi-engines.com

Усовершенствованные двигатели также не ограничатся приведением в действие крылатых ракет воздушного базирования. Такие двигатели, как TDI-J85, могут помочь в продвижении нового поколения других расходных систем, в том числе приманок , а также беспилотных летательных аппаратов.

Тяга (на холостом ходу — макс) 20-200 фунтов (88-890 Н)
Мощность (холостой ход — макс.) 1,2 кВт
Вес двигателя 28 фунтов (12,7 кг)
Вес топливного насоса 1,4 фунта (0,65 кг)

tdi-engines.com

Будущие планы ВВС по программе «Grey Wolf» не совсем ясны. В июне 2020 года было заявлен, что отменяются запланированные дополнительные фазы тестирования и перенесет работу по созданию сетевых роящихся боеприпасов на другой проект.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Теги: Технологии TDI-J85 ВВС США двигатель крылатые ракеты турбореактивный двигатель

Предыдущая статья ВВС США начинают огневые испытания нового вертолёта HH-60W Jolly Green II

Следующая статья О загадочном истребителе ВВС США. «Мы готовы приступить к созданию самолетов следующего поколения»

Предоставлено SendPulse

Нравится 0

Сажевый фильтр

Сажевый фильтр состоит из ячеистой керамической структуры, изготовленной из карбида кремния. В керамическом монолите имеется множество мелких каналов, которые попеременно заглушены с входной или выходной стороны. Таким образом сформированы впускные и выпускные каналы, разделенные фильтрующими стенками.

Фильтрующие стенки пористые и покрыты слоем окиси алюминия и окиси церия. На этот слой напылен благородный металл — платина, которая служит катализатором.

Принцип работы

Отработавшие газы, содержащие сажу, протекают через пористые фильтрующие стенки входных каналов. При этом газы проходят через поры, а частицы сажи задерживаются во входных каналах.

Изменение турбинной геометрии

Система VTG сегодня довольно успешно употребляется в моторах TDI. Во время малых оборотов и незначительном газовом объеме блок контроля меняет местоположение механических устремляющих лопастей, при которых происходит сужение диаметра. Это способствует ускорению газового потока и усилению давления. При повышении оборотов мотора происходит усиление выхлопного давления, поэтому блок контроля наоборот повышает трубопроводный диаметр. Подобные нагнетатели способствуют приданию дополнительной мощности мотору, уменьшая объем выбросов и увеличивая приемистость.

Главным достоинством двигателя наряду с системой прямого впрыска является турбонаддув изменяемой геометрии, что и делает этот тип двигателей конкурентным не только в родственных кругах, но и в бензиновых. В таком турбонагнетателе направление и параметры отработанного газового потока поддаются регулировке, благодаря чему удается достичь наиболее подходящей скорости вращения турбины, а это очень положительно сказывается на производительности. В обычной турбине подобная возможность не предусмотрена.

Турбина образца VNT, к примеру, оснащена направляющими лопатками, вакуумным приводом и системой управления. Двигаясь вокруг собственной оси лопатки занимают положение под нужным углом, меняя таким образом сечение канала. Это и позволяет корректировать скорость и вектор выхлопов.

Поворот лопаток находится под контролем управляющего механизма, оснащенного кольцом и рычагом, воспринимающим воздействие вакуумного привода, регулируемого отдельной тягой. В свою очередь привод управляется клапаном, входящим в ЭБУ двигателя и реагирующим на изменения давления наддува благодаря сигналам, поступающим от температурного сенсора (на впуске) и сенсора давления наддува.

В общем, турбина на TDI – своего рода дозатор энергии отработанного потока, обеспечивающий нужное давление воздуха в любом режиме работы двигателя.

Наряду с системой прямого впрыска главным неоспоримым достоинством мотора составляет турбонаддув изменяемой геометрии, это делает такие двигатели конкурентоспособными не только среди дизельных, но и бензиновых моторов.

Если рассматривать турбину VNT, то в ее конструкции предусмотрены направляющие лопатки, система управления и вакуумный привод. При движении вокруг своей оси лопатки находятся в положении нужного угла, и за счет этого изменяется сечение канала. На основании этого появляется возможность корректировки скорости и вектора выхлопов.

Управляющий механизм всегда держит под контролем поворот лопаток. Он оснащен кольцом и рычагом, который воспринимает влияние вакуумного привода, регулируемого независимой тягой.

Клапан является управлением привода, он входит в ЭБУ двигателя и несет ответственность за перемену давления наддува при помощи сигналов, которые приходят от температурного сенсора и сенсора давления наддува.

Дозатор энергии отработанного потока представляет собой своего рода турбину на TDI двигателе. Дозатор обеспечивает необходимое давление воздуха при любых условиях работы двигателя.

Характерные проблемы: мнение специалистов

Что касается мнений мастеров СТО на счет легендарного 1.9 TDI, здесь полное единодушие: это надежный и неприхотливый агрегат.

Мотор не склонен «поджирать» масло, без проблем заводится в холода, расходует порядка 6 литров на трассе и 8-9 — в городском цикле.

К дорогостоящему ремонту, с которым обращаются владельцы 1.9 TDI на сервис, относят, например, восстановление посадочных мест (колодцев) под форсунки. Такая необходимость может назреть уже к 250-300 тыс. км пробега.

Другая серьезная статья расходов — замена распредвала. Он изнашивается примерно к тому же пробегу — 300 тыс. км. Решается только заменой дорогостоящей детали. Сервисмены рекомендуют совместить такой ремонт с заменой гидрокомпенсаторов.

Больно ударит по бюджету замена насос-форсунок на версиях мотора, выпущенных после 2002 года.

Другой типичный повод обращения в мастерскую — выход из строя датчиков расхода воздуха. Чаще всего причина кроется в нарушении регламента замены воздушного фильтра.

Мина замедленного действия

Мы не будем рассматривать подробно особенности каждой из модификаций 1.9 TDI, но есть вариант, который точно лучше не выбирать.

Речь о турбодизеле с насос-форсунками, мощностью 105 л.с. под индексом ВХЕ.

Даже при аккуратном стиле вождения и нормальном уходе, спустя 100-150 тыс. км происходит следующее.

Из-под капота доносится стук, затем мотор глохнет. Внутри — ужасное зрелище пробитого шатуном блока цилиндров.

Все дело в некачественных вкладышах. Их поверхность просто расслаивается — особенно если владелец применяет масло «пролонгированного» действия (с увеличенным регламентом замены).

О проблеме, по идее, должны сообщить стуки в нижней части моторного отсека. Но так как мотор оснащен насос-форсунками, расслышать подозрительные звуки невозможно. 

Если выявить дефект вовремя, можно обойтись дорогостоящей заменой вкладышей и коленвала, иначе же двигатель пойдет под замену.

Проблемный ВХЕ монтировали в 2006-2008 годах на VW Golf, VW Passat, VW Touran; Audi A3; Seat Altea, Seat Leon, Seat Toledo; Skoda Octavia, Skoda Superb.

Итого

1.9 TDI — один из лучших двигателей в истории автомобилестроения: экономичный, конструктивно не «навороченный», ремонтопригодный. В мощных версиях — еще и динамичный.

Для выбора по надежности и долговечности предпочтительнее выглядят варианты 1.9 TDI, выпущенные после 2000 года, но из-за насос-форсунок стоимость их ремонта просто неподъемная.

Альтернатива — разве что 2.0 TDI CR. Когда назревает необходимость замены двигателя для автомобиля VAG, выбор ведется именно между 1.9 и 2.0 TDI.

О лучших дизельных моторах концерна VAG мы писали здесь.

Двигатель SDI

SDI. Saugdieseldirekteinspritzung.

Название бренда (производное от «всасывания дизельного впрыска» или «всасывание Дизеля прямого впрыска» было принято для того, чтобы различать между более ранними и менее эффективными непрямыми инжекторными двигателями, называетсяSD или » Всасывающий Дизель» (Saugdiesel ), который также были произведены Volkswagen Group.

Моторы класса SDI отличаются продолжительностью «жизни» и простотой конструкции. Большие пробеги для SDI — не проблема, моторы очень выносливы и надежны, однако если ремонт все же потребуется, то стоимость его вряд ли вас обрадует.

Датчик положения направляющего аппарата турбонагнетателя G581

Датчик положения направляющего аппарата турбонагнетателя встроен в вакуумный привод управления турбонагнетателя. Он представляет собой датчик перемещения и предоставляет блоку управления двигателя информацию о положении направляющих лопаток турбонагнетателя.

Использование сигнала

Сигнал датчика характеризует текущее положение направляющих лопаток. Этот сигнал вместе с сигналом датчика давления наддува G31 дают полную информацию о регулировании турбонаддува.

При выходе из строя

При выходе датчика из строя оценка положения направляющих лопаток производится на основе сигнала датчика давления наддува и числа оборотов двигателя. При этом загорается лампа check engine.

Что лучше HDI, TDI, SDI, или CDI? Что обозначают эти аббревиатуры?

То, что дизеля более выгодные, чем бензиновые моторы, ни для кого не секрет, однако определиться с типом топлива — это еще не значит определится с типом самого дизельного мотора. Довольно распространенная проблема многих новичков — путаница между многочисленными аббревиатурами (HDI, TDI, SDI, CDI), от которых в будущем очень много зависит.

Зависит «характер» автомобиля, его «предрасположенность» к поломкам, а также стоимость ремонта этих поломок, а также расход топлива и многое другое. В этой статье я попытаюсь как можно более доступно объяснить, в чем различия между разными модификациями дизельных двигателей, чтобы вы могли сориентироваться и подобрать для себя наиболее подходящий вариант.

Забегая наперед скажу, что две последние буквы «DI» всех вышеперечисленных аббревиатур означают Direct Injection — непосредственный впрыск. Технология прямого или как его еще называют непосредственного впрыска, одна из самых продвинутых на сегодняшний день и предусматривает наличие общего канала, через который происходит подача топлива.

Турбонаддув TDI: турбина с изменяемой геометрией

От эффективности работы турбоанддува TDI в значительной мере зависит не только динамика, но и экономичность наряду с экологичностью. Правильное наддува воздуха должно быть реализовано в максимально широком диапазоне. По этой причине на моторы TDI ставится турбокомпрессор с изменяемой геометрией турбины.

Ведущие производители турбин в мире используют следующие названия:

  • Турбина VGT (от англ. Variable Geometry Turbocharger, что означает турбокомпрессор с изменяемой геометрией). Производится BorgWarner.
  • Турбокомпрессор для дизеля VNT (от англ. Variable Nozzle Turbine, что означает турбина с переменным соплом). Это название использует фирма Garrett.

Турбонагнетатель с изменяемой геометрией отличается от обычной турбины тем, что имеет возможность регулировки как направления, так и величины потока отработавших газов. Данная особенность позволяет добиться наиболее подходящей частоты вращения турбины применительно к конкретному режиму работы ДВС. Производительность компрессора в этом случае сильно повышается.

Например, турбина VNT имеет в основе конструкции специальные направляющие лопатки. Дополнительно имеется механизм управления, а также отмечено наличие вакуумного привода. Указанные лопатки турбины производят поворот на необходимый угол вокруг свой оси, тем самым способны менять скорость и направление потока выхлопа. Это происходит благодаря изменению величины сечения канала.

Механизм управления отвечает за поворот лопаток. Конструктивно механизм имеет кольцо и рычаг. На рычаг оказывает воздействие вакуумный привод, который управляет работой механизма посредством специальной тяги. Вакуумный привод управляется отдельным клапаном, который ограничивает давление наддува. Клапан является составным элементом электронной системы управления ДВС и срабатывает зависимо от показателей величины давления наддува. Эта величина измеряется отдельными датчиками:

  • температурный датчик, который измеряет температуру воздуха на впуске;
  • датчик давления наддува;

Другими словами, турбонаддув на TDI работает так, чтобы давление наддувочного воздуха всегда было оптимальным на разных оборотах двигателя. Фактически, турбина дозирует энергию потока отработавших газов.

  1. Как известно, на низких оборотах двигателя скорость потока (энергия) выхлопа является достаточно низкой. В таком режиме направляющие лопатки обычно закрыты, чем достигается минимальное сечение в канале. В результате прохождения через такой канал даже небольшое количество газов более эффективно крутит турбину, заставляя компрессорное колесо вращаться заметно быстрее. Получается, турбокомпрессор обеспечивает большую производительность на низких оборотах.
  2. Если водитель резко нажимает на газ, тогда у обычной турбины возникает эффект так называемой «турбоямы». Под турбоямой следует понимать задержку отклика на нажатие педали газа, то есть не моментальный прирост мощности, а подхват после небольшой паузы. Такая особенность обусловлена инерционностью системы турбонаддува, в результате чего потока газов оказывается недостаточно в момент резкого увеличения оборотов коленвала. В турбинах с изменяемой геометрией направляющие лопатки осуществляют свой поворот с определенной задержкой, что позволяет поддерживать нужное давление наддува и практически избавиться от турбоямы.
  3. При езде на высоких и приближенных к максимальным оборотах двигателя отработавшие газы имеют максимум энергии. Чтобы предотвратить создание избыточного давления наддува лопатки в турбинах с изменяемой геометрией поворачиваются так, чтобы мощный поток газов двигался по широкому каналу с наибольшим поперечным сечением.

Классификации

По источнику энергии

Двигатели могут использовать следующие типы источников энергии:

  • электрические; постоянного тока (электродвигатель постоянного тока);
  • переменного тока (синхронные и асинхронные);

электростатические;
химические;
ядерные;
гравитационные;
пневматические;
гидравлические;
лазерные.

По типам движения

Получаемую энергию двигатели могут преобразовывать к следующим типам движения:

  • вращательное движение твёрдых тел;
  • поступательное движение твёрдых тел;
  • возвратно-поступательное движение твёрдых тел;
  • движение реактивной струи;
  • другие виды движения.

Электродвигатели, обеспечивающие поступательное и/или возвратно-поступательное движение твёрдого тела;

  • линейные;
  • индукционные;
  • пьезоэлектрические.

Некоторые типы электроракетных двигателей:

  • ионные двигатели;
  • стационарные плазменные двигатели;
  • двигатели с анодным слоем;
  • радиоионизационные двигатели;
  • коллоидные двигатели;
  • электромагнитные двигатели и др.

По устройству

Двигатели внешнего сгорания — класс двигателей, где источник тепла или процесс сгорания топлива отделены от рабочего тела:

  • поршневые паровые двигатели;
  • паровые турбины;
  • двигатели Стирлинга;
  • паровой двигатель.

Двигатели внутреннего сгорания — класс двигателей, у которых образование рабочего тела и подвод к нему тепла объединены в одном процессе и происходят в одном технологическом объёме:

  • двигатели с герметично запираемыми рабочими камерами (поршневые и роторные ДВС);
  • двигатели с камерами, откуда рабочее тело имеет свободный выход в атмосферу (газовые турбины).

По типу движения главного рабочего органа ДВС с запираемыми рабочими камерами делятся на ДВС с возвратно-поступательным движением (поршневые) (делятся на тронковые и крецкопфные) и ДВС с вращательным движением (роторные), которые по видам вращательного движения делятся на 7 различных типов конструкций. По типу поджига рабочей смеси ДВС с герметично запираемыми камерами делятся на двигатели с принудительным электрическим поджиганием (калильным или искровым) и двигатели с зажиганием рабочей смеси от сжатия (дизель).

По типу смесеобразования ДВС делятся на: с внешним смесеобразованием (карбюраторные) и с непосредственным впрыском топлива в цилиндры или впускной коллектор (инжекторные). По типу применяемого топлива различают ДВС работающие на бензине, сжиженном или сжатом природном газе, на спирте (метаноле) и пр.

Реактивные двигатели

Воздушно-реактивные двигатели:

  • прямоточные реактивные (ПВРД);
  • пульсирующие реактивные (ПуВРД);
  • газотурбинные двигатели: турбореактивные (ТРД);
  • двухконтурные (ТРДД);
  • турбовинтовые (ТВД);
  • турбовинтовентиляторные ТВВД;

Ракетные двигатели

  • жидкостные ракетные двигатели;
  • твердотопливные ракетные двигатели;
  • ядерные ракетные двигатели;
  • некоторые типы электроракетных двигателей.

По применению

В связи с принципиально различными требованиями к двигателю в зависимости от его назначения, двигатели идентичные по принципу действия, могут называться «корабельными», «авиационными», «автомобильными» и тому подобными.

Категория «Двигатели» в патентоведении одна из наиболее активно пополняемых. В год по всему миру подаётся от 20 до 50 заявок в этом классе. Часть из них отличаются принципиальной новизной, часть — новым соотношением известных элементов. Новые же по конструкции двигатели появляются очень редко.

TDI – только для идиотов?

Чаще всего приходилось сталкиваться с неисправностями привода масляного насоса. Что интересно, в зависимости от модификации 2.0 TDI применялось два совершенно разных решения, и оба могли скоропостижно «уйти из жизни».

В версиях с уравновешивающим валом использовался привод маслонасоса с помощью тонкого шестигранного вала, прозванного механиками «карандаш». К сожалению, он быстро изнашивался, и возникал острый дефицит смазки. В лучшем случае заканчивался турбокомпрессор, в худшем – сам двигатель.

Другие модификации имели привод маслонасоса посредством надежной цепи. Но это в теории. А на практике, хотя цепь и оказалась надежной, но зубчатые шестерни быстро изнашивались. При этом сначала снизу появлялся грохот. Однако из-за шумной работы двигателя распознать недуг было непросто. Далее события развивались по банальному сценарию – нехватка смазки, загорание лампочки низкого давления масла, и выход из строя двигателя. В любом случае, если высветилась масленка, значит процесс для турбодизеля уже не обратимый.

Подведем итоги

Благодаря наработкам и инженерным решениям компании Audi дизельному двигателю удалось подняться на новую ступень своей эволюции. Экономичность моторов TDI является своеобразным рекордом. Модель Audi 100 TDI прошла 4 814,4 километра на запасе топлива, равному всего одному полному топливному баку. Средняя скорость движения составляла около 60 км/ч, при этом средний расход горючего оказался на отметке чуть более 1.7 л на 100 км. Также моторы TDI вплотную теснят бензиновые агрегаты не только на улицах, но и на гоночных треках. Отличным примером можно считать дизельную Audi R10 TDI, которая регулярно завоевывает победы на сложнейших трассах.

Напоследок добавим, что основным залогом долгой жизни как мотора TDI, так и любого другого, является правильный подбор и своевременная замена моторного масла, грамотная эксплуатация и езда на качественном топливе, а также профессиональный сервис. Соблюдение данных условий позволит двигателю и другим смежным системам сохранять работоспособность не одну сотню тысяч километров.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector