Физика: формула удельного сопротивления и закон ома

Определение

Таблица коэффициентов сопротивления в порядке возрастания, различных призм (правый столбец) и закругленных форм (левый столбец) при числах Рейнольдса от 10 4 до 10 6 с потоком слева

Коэффициент лобового сопротивления определяется как
cd{\ displaystyle c _ {\ mathrm {d}}}

cdзнак равно2Fdρты2А{\ displaystyle c _ {\ mathrm {d}} = {\ dfrac {2F _ {\ mathrm {d}}} {\ rho u ^ {2} A}}}

куда:

Fd{\ Displaystyle F _ {\ mathrm {d}}}- сила сопротивления , которая по определению является составляющей силы в направлении скорости потока ,
ρ{\ displaystyle \ rho}- массовая плотность жидкости,
ты{\ displaystyle u}- скорость потока объекта относительно жидкости,
А{\ displaystyle A}это эталонная область .

Контрольная площадь зависит от того, какой тип коэффициента сопротивления измеряется. Для автомобилей и многих других объектов эталонной областью является проецируемая фронтальная область транспортного средства. Это не обязательно может быть площадь поперечного сечения транспортного средства, в зависимости от того, где это поперечное сечение взято

Например, для сферы (обратите внимание, это не площадь поверхности = ).
Азнак равноπр2{\ Displaystyle А = \ пи г ^ {2}}4πр2{\ displaystyle 4 \ pi r ^ {2}}

Для аэродинамических поверхностей эталонной площадью является номинальная площадь крыла. Так как это имеет тенденцию быть большим по сравнению с площадью лобовой части, результирующие коэффициенты лобового сопротивления имеют тенденцию быть низкими, намного ниже, чем для автомобиля с таким же сопротивлением, лобовой площадью и скоростью.

Дирижабли и некоторые тела вращения используют объемный коэффициент сопротивления, в котором опорная области является квадратом из кубического корня объема дирижабля (объем к мощности два третей). Погруженные в воду тела обтекаемой формы используют смоченную поверхность.

Два объекта, имеющие одинаковую контрольную область, движущиеся с одинаковой скоростью через жидкость, будут испытывать силу сопротивления, пропорциональную их соответствующим коэффициентам сопротивления. Коэффициенты для не модернизированных объектов могут быть 1 или более, для обтекаемых объектов — намного меньше.

Было продемонстрировано, что коэффициент лобового сопротивления является функцией числа ( ), числа Рейнольдса ( ) и отношения между влажной площадью и передней площадью :
cd{\ displaystyle c _ {\ rm {d}}}Bе{\ displaystyle \ mathrm {Be}}ре{\ Displaystyle \ mathrm {Re}}Аш{\ displaystyle A _ {\ rm {w}}}Аж{\ displaystyle A _ {\ rm {f}}}

cdзнак равно2АшАжBереL2{\ displaystyle c _ {\ rm {d}} = 2 {\ frac {A _ {\ rm {w}}} {A _ {\ rm {f}}}} {\ frac {\ mathrm {Be}} {\ mathrm {Re} _ {L} ^ {2}}}}

где — число Рейнольдса, связанное с длиной пути прохождения жидкости .
реL{\ Displaystyle \ mathrm {Re} _ {L}}L{\ displaystyle L}

6.5.Сила упругости. Закон Гука.

При
действии на тело внешних сил, возникает
упругая и неупругая деформация.

П

x

x=0

ри упругой деформации тело после
прекращения действия внешних сил
полностью восстанавливает свою форму
и размеры. При неупругой деформации
форма и размеры тела не восстанавливаются.

Упругая
деформация пружины.

При растяжении пружины (рис 2.14) на
величинуотносительно её равновесного состояния
(х= 0) возникает упругая сила,
которая возвращает пружину в прежнее
положение после прекращения действия
внешней силы. Модуль упругой силы,
возникающей прилинейном растяжении
или сжатии пружины определяется законом
Гука.

,
(2.56)

где– проекция силы упругости на осьx,
знак минус учитывает противоположные
направления силыи перемещения пружины.

Деформация стержня

Стержень длинной lи сечениемSпри действии
силиперпендикулярно его торцам в противоположных
направлениях деформируется (растягивается
или сжимается) (рис 2.15). Деформация
стержня определяется относительной
величиной

(2.57)

где ∆l=ll
,
lдлинна стержня
после деформации.

Рис. 2.15

Опыт показывает, что

,
(2.58)

где α
– коэффициент упругости стержня,


– нормальное напряжение, измеряемое в(паскаль).

Наряду с коэффициентом упругости aдля характеристики упругих свойств тел
при нормальных напряжениях используютмодуль ЮнгаЕ = 1/a,
который, как и напряжение, измеряется
в паскалях.

Относительное удлинение (сжатие) и
модуль Юнга в соответствии с равенствами
(2.13 и 2.14) определяется из соотношений:

,.
(2.59)

Модуль Юнга равен такому нормальному
напряжению, при котором деформация
стержня Dlравна его первоначальной длинеl.
В действительности при таких напряжениях
происходит разрушение стержня.

Решая уравнение (2.58) относительно F,
и подставляя вместоe=Dl/l,a= 1/Е, получим формулу
для определения силы деформирующей
стержень с сечениемSна
величину

,
(2.60)

где
постоянный для стержня коэффициент,
который в соответствии с законом Гука
соответствует коэффициенту упругости
стержня при его сжатии и растяжении.

При действии на стержень касательного
(тангенциального) напряжения

силы
F1 иF2приложены параллельно противоположным
граням площадьюSпрямоугольного стержня вызываютдеформацию сдвига (рис
2.16).

b

Рис. 2.16

Если действие сил равномерно распределено
по всей поверхности соответствующей
грани, то в любом сечении, параллельном
этим граням, возникает тангенциальное
напряжение.
Под действием напряжений тело деформируется
так, что одна грань сместиться относительно
другой на некоторое расстояниеа. Если
тело мысленно разбить на элементарные,
параллельные рассматриваем граням
слои, то каждый слой окажется сдвинутым
относительно соседних с ним слоев.

При деформации сдвига любая прямая,
первоначально перпендикулярная к слоям,
отклонится на некоторый угол φ. тангенс
которого называется относительным
сдвигом

,
(2.61)

где b– высота грани. При
упругих деформациях угол φ очень мал,
поэтому можно считать, чтои.

Опыт показывает, что относительный
сдвиг пропорционален тангенциальному
напряжению

,
(2.62)

где G– модуль сдвига.

Модуль сдвигазависит только от свойств материала и
равен тангенциальному напряжению при
угле φ = 45˚. Модуль сдвига так же, как и
модуль Юнга измеряется в паскалях (Па).
Сдвиг стержня на уголвызывает сила

=GSφ,
(2.63)

где
G·S– коэффициент упругости стержня при
деформации сдвига.

Сопротивление

Представьте, что есть труба, в которую затолкали камни. Вода, которая протекает по этой трубе, станет течь медленнее, потому что у нее появилось сопротивление. Точно также будет происходить с электрическим током.

Сопротивление — физическая величина, которая показывает способность проводника пропускать электрический ток. Чем выше сопротивление, тем ниже эта способность.

Теперь сделаем «каменный участок» длиннее, то есть добавим еще камней. Воде будет еще сложнее течь.

Сделаем трубу шире, оставив количество камней тем же — воде полегчает, поток увеличится.

Теперь заменим шероховатые камни, которые мы набрали на стройке, на гладкие камушки из моря. Через них проходить тоже легче, а значит сопротивление уменьшается.

Электрический ток реагирует на эти параметры аналогичным образом: при удлинении проводника сопротивление увеличивается, при увеличении поперечного сечения (ширины) проводника сопротивление уменьшается, а если заменить материал — изменится в зависимости от материала.

Эту закономерность можно описать следующей формулой:

Сопротивление

R = ρ l/S

R — сопротивление

l — длина проводника

S — площадь поперечного сечения

ρ — удельное сопротивление [Ом*мм^2/м]

Единица измерения сопротивления — Ом. Названа в честь физика Георга Ома.

Будьте внимательны!

Площадь поперечного сечения проводника и удельное сопротивление содержат в своих единицах измерения мм^2. В таблице удельное сопротивление всегда дается в такой размерности, да и тонкий проводник проще измерять в мм^2. При умножении мм^2 сокращаются и мы получаем величину в СИ.

Но это не отменяет того, что каждую задачу нужно проверять на то, что там мм^2 в обеих величинах! Если это не так, то нужно свести не соответствующую величину к мм^2.

Знайте!
СИ — международная система единиц. «Перевести в СИ» означает перевод всех величин в метры, килограммы, секунды и другие единицы измерения без приставок. Исключение составляет килограмм с приставкой «кило».

Удельное сопротивление проводника — это физическая величина, которая показывает способность материала пропускать электрический ток. Это табличная величина, она зависит только от материала.

Параллельное и последовательное соединение

Все это время речь шла о цепях с одним резистором. Рассмотрим, что происходит, если их больше.

Последовательное соединение

Параллельное соединение

Схема

Резисторы следуют друг за другом

Между резисторами есть два узла

Узел — это соединение трех и более проводников

Сила тока

Сила тока одинакова на всех резисторах

I = I1 = I2

Сила тока, входящего в узел, равна сумме сил токов, выходящих из него

I = I1 + I2

Напряжение

Общее напряжение цепи складывается из напряжений на каждом резисторе

U = U1 + U2

Напряжение одинаково на всех резисторах

U = U1 = U2

Сопротивление

Общее сопротивление цепи складывается из сопротивлений каждого резистора

R = R1 + R2

Общее сопротивление для бесконечного количества параллельно соединенных резисторов

1/R = 1/R1 + 1/R2 + … + 1/Rn

Общее сопротивление для двух параллельно соединенных резисторов

R = (R1 * R2)/R1 + R2

Общее сопротивление бесконечного количества параллельно соединенных одинаковых резисторов

R = R1/n

Зачем нужны эти соединения, если можно сразу взять резистор нужного номинала?

Начнем с того, что все электронные компоненты изготавливаются по ГОСТу. То есть есть определенные значения резисторов, от которых нельзя отойти при производстве. Это значит, что не всегда есть резистор нужного номинала и его нужно соорудить из других резисторов.

Параллельное соединение также используют, как «запасной аэродром»: когда на конечный результат общее сопротивление сильно не повлияет, но в случае отказа одного из резисторов, будет работать другой.

Признаемся честно: схемы, которые обычно дают в задачах (миллион параллельно соединенных резисторов, к ним еще последовательный, а к этому последовательному еще миллион параллельных) — в жизни не встречаются. Но навык расчета таких схем впоследствии упрощает подсчет схем реальных, потому что так вы невооруженным глазом отличаете последовательное соединение от параллельного.

Решим несколько задач на последовательное и параллельное соединение.

Задачка раз

Найти общее сопротивление цепи.

R1 = 1 Ом, R2 = 2 Ом, R3 = 3 Ом, R4 = 4 Ом.

Решение:

Общее сопротивление при последовательном соединении рассчитывается по формуле:

R = R1 + R2 + R3 + R4 = 1 + 2 + 3 + 4 = 10 Ом

Ответ: общее сопротивление цепи равно 10 Ом

Задачка два

Найти общее сопротивление цепи.

R1 = 4 Ом, R2 = 2 Ом

Решение:

Общее сопротивление при параллельном соединении рассчитывается по формуле:

R = (R1 * R2)/R1 + R2 = 4*2/4+2 = 4/3 = 1 ⅓ Ом

Ответ: общее сопротивление цепи равно 1 ⅓ Ом

Задачка три

Найти общее сопротивление цепи, состоящей из резистора и двух ламп.

R1 = 1 Ом, R2 = 2 Ом, R3 = 3 Ом

Решение:

Сначала обозначим, что лампы с точки зрения элемента электрической цепи не отличаются от резисторов. То есть у них тоже есть сопротивление, и они также влияют на цепь.

В данном случае соединение является смешанным. Лампы соеденены параллельно, а последовательно к ним подключен резистор.

Сначала посчитаем общее сопротивление для ламп. Общее сопротивление при параллельном соединении рассчитывается по формуле:

Rламп = (R2 * R3)/R2 + R3 = 2*3/2+3 = 6/5 = 1,2 Ом

Общее сопротивление при последовательном соединении рассчитывается по формуле:

R = R1 + Rламп = 1 + 1,2 = 2,2 Ом

Ответ: общее сопротивление цепи равно 2,2 Ом.

Наконец-то, последняя и самая сложная задача! В ней собрали все самое серьезное из этой статьи .

Задачка четыре со звездочкой

К аккумулятору с ЭДС 12 В, подключена лампочка и два параллельно соединенных резистора сопротивлением каждый по 10 Ом. Известно, что ток в цепи 0,5 А, а сопротивление лампочки R/2. Найти внутреннее сопротивление аккумулятора.

Решение:

Найдем сначала сопротивление лампы.

Rлампы = R/2 = 10/2 = 5 Ом

Теперь найдем общее сопротивление двух параллельно соединенных резисторов.

Rрезисторов = (R * R)/R + R = R^2)/2R = R/2 = 10/2 = 5 Ом

И общее сопротивление цепи равно:

R = Rлампы + Rрезисторов = 5 + 5 = 10 Ом

Выразим внутреннее сопротивление источника из закона Ома для полной цепи.

I = ε/(R + r)

R + r = ε/I

r = ε/I — R

Подставим значения:

r = 12/0,5 — 10 = 14 Ом

Ответ: внутреннее сопротивление источника равно 14 Ом.

Что такое мощность резистора

Мощность определяется как произведение силы тока на сопротивление: P = I * R и измеряется в ваттах (закон Ома). Рассеиваемая мощность резистора — это максимальный ток, который сопротивление может выдерживать длительное время без ущерба для работоспособности. То есть, этот параметр надо выбирать для каждой схемы отдельно — по максимальному рабочему току.

Как определить мощность резистора по внешнему виду: надо знать соответствие размеров и мощностей

Физически рассеиваемая мощность резистора — это то количество тепла, которое его корпус может «отдать» в окружающую среду и не перегреться при этом до фатальных последствий. При этом, нагрев не должен слишком сильно влиять на сопротивление резистора.

Расчет силы тока по мощности, напряжению, сопротивлению

Бесплатный калькулятор расчета силы тока по мощности и напряжению/сопротивлению – рассчитайте силу тока в однофазной или трехфазной сети в ОДИН КЛИК!

Если вы хотите узнать как рассчитать силу тока в цепи по мощности, напряжению или сопротивлению, то предлагаем воспользоваться данным онлайн-калькулятором. Программа выполняет расчет для сетей постоянного и переменного тока (однофазные 220 В, трехфазные 380 В) по закону Ома. Рекомендуем без необходимости не изменять значение коэффициента мощности (cos φ) и оставлять равным 0.95. Знание величины силы тока позволяет подобрать оптимальный материал и диаметр кабеля, установить надежные предохранители и автоматические выключатели, которые способны защитить квартиру от возможных перегрузок. Нажмите на кнопку, чтобы получить результат.

Смежные нормативные документы:

  • СП 256.1325800.2016 «Электроустановки жилых и общественных зданий. Правила проектирования и монтажа»
  • СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»
  • СП 76.13330.2016 «Электротехнические устройства»
  • ГОСТ 31565-2012 «Кабельные изделия. Требования пожарной безопасности»
  • ГОСТ 10434-82 «Соединения контактные электрические. Классификация»
  • ГОСТ Р 50571.1-93 «Электроустановки зданий»

Что такое сила сопротивления в физике

Сила сопротивления — сила, которая возникает во время движения тела в жидкой или газообразной среде и препятствует этому движению.

Важно уметь отличать силу сопротивления от силы трения. Во втором случае рассматривается характер взаимодействия твердых тел друг с другом. Таким образом, трение можно наблюдать, когда какой-либо предмет перемещается по поверхности другого

Вектор этой силы будет направлен в противоположную сторону направления движения

Таким образом, трение можно наблюдать, когда какой-либо предмет перемещается по поверхности другого. Вектор этой силы будет направлен в противоположную сторону направления движения.

Для того чтобы рассчитать силу сопротивления необходимо умножить коэффициент сопротивления материала на силу, провоцирующую перемещение этого предмета.

Примечание

В качестве примера силы сопротивления можно рассмотреть движение поезда. Воздух, окружающий состав, замедляет скорость его перемещения, то есть возникает сила сопротивления.

От чего зависит в механике и динамике

Сила сопротивления зависит от нескольких факторов. На ее величину оказывают влияния следующие характеристики:

  1. Особенности среды и показатели ее плотности, к примеру, жидкость обладает большей плотностью, чем газообразное вещество.
  2. Форма тела, так как предметы, обладающие обтекаемыми вытянутыми вдоль направления движения формами подвержены меньшему сопротивлению, чем тела с множеством плоскостей, расположенных перпендикулярно движению.
  3. Скорость перемещения тела.

Силу сопротивления можно наблюдать опытным путем. К примеру, если предмет переместился на величину пути l , когда на него воздействует сила сопротивления, обозначение которой представлено, как \($$F_{r}$$\), затрачивается работа, которую можно рассчитать по формуле:

\($$A=F_{r}\times l$$\)

В случае, когда площадь поперечного сечения движущегося предмета равна S, он будет сталкиваться с частицами, объем которых составляет Sl. Полную массу этих частиц можно представить, как \($$\rho_{ a}\times Sl$$\). Если частицы полностью увлекаются телом, они приобретают скорость V. Кинетическую энергию можно рассчитать по формуле:

\($$K=\frac{\rho_{ a}\times Sl\times V^{2}}{2}$$\)

Энергию создают внешние силы за счет своей работы с мощностью по определению силы сопротивления. Откуда, A=K. Таким образом,

\($$F_{r}=\frac{\rho_{ a}\times S\times V^{2}}{2}$$\)

В этом случае зависимость силы сопротивления от скорости перемещения объекта возрастает и становится пропорциональна ее второй степени. В отличие от силы внутреннего трения ее обозначают, как силу динамического лобового сопротивления.

Следует отметить, что теория, в которой частицы среды полностью увлекаются транспортируемыми телами, преувеличена. В условиях реального времени любой движущийся предмет обтекаем потоком, который снижает воздействие на него сил сопротивления. Поэтому при расчетах нередко используют коэффициент сопротивления С, обозначая силу лобового сопротивления формулой:

\($$F_{r}=C\times S\times \frac{\rho_{ a}\times V^{2}}{2}$$\)

Как найти сопротивление в цепи?

Его можно узнать из закона Ома, который связывает силу тока, напряжение и сопротивление. В этом случае, оно рассчитывается по формуле

R – сопротивление, Ом

U – напряжение на концах проводника, Вольты

I – сила тока, текущая через проводник, Амперы

То есть нам достаточно замерить напряжение на концах какого-либо проводника и измерить силу тока, проходящую через него. После применить формулу и рассчитать сопротивление проводника. Давайте для закрепления решим простую задачу.

Задача

Рассчитать сопротивление проводника, если известно, что на него подают напряжение 5 Вольт и сила тока, проходящая через него 0,1 Ампер.

Решение

В электронике и электротехнике используют специальные радиоэлементы, которые обладают сопротивлением электрическому току – резисторы. Более подробно про них можно прочитать в этой статье.

постоянные резисторы

Также вот вам видео, где очень умный преподаватель объясняет, что такое сопротивление

Близкие темы к этой статье

Источник

Удельное электрическое сопротивление

Дальнейшие исследования позволили установить связь величины электрического сопротивления с его основными геометрическими размерами. Оказалось, что сопротивление проводника прямо пропорционально длине проводника L и обратно пропорционально площади поперечного сечения проводника S.

Эта функциональная связь хорошо описывается следующей формулой:

$ R = ρ *{ L\over S} $ (4)

Постоянная для каждого вещества величина ρ была названа удельным сопротивлением. Значение этого параметра зависит от плотности вещества, его кристаллической структуры, строения атомов и прочих внутренних характеристик вещества. Из формулы (4) можно получить формулу для расчета удельного сопротивления, если имеются экспериментальные значения для R, L и S:

$ ρ = R*{ S\over L } $ (5)

Для большинства известных веществ измерения были произведены и внесены в справочные таблицы электрических сопротивлений проводников.

Удельное сопротивление металлов, Ом*мм2/м

(при Т = 20С)

Серебро

0,016

Бронза (сплав)

0,1

Медь

0,017

Олово

0,12

Золото

0,024

Сталь (сплав)

0,12

Алюминий

0,028

Свинец

0,21

Иридий

0,047

Никелин (сплав)

0,42

Молибден

0,054

Манганин (сплав)

0,45

Вольфрам

0,055

Константан (сплав)

0,48

Цинк

0,06

Титан

0,58

Латунь (сплав)

0,071

Ртуть

0,958

Никель

0,087

Нихром (сплав)

1,1

Платина

0,1

Висмут

1,2

Экспериментально было обнаружено, что с понижением температуры сопротивление металлов уменьшается. При приближении к температуре абсолютного нуля, которая равна -273С, сопротивление некоторых металлов стремится к нулю. Это явление называется сверхпроводимостью. Атомы и молекулы как бы “замораживаются”, прекращают любое движение и не оказывают сопротивления потоку электронов.

Что мы узнали?

Итак, мы узнали, что способность проводника ограничивать величину электрического тока называется сопротивлением. Величину сопротивления проводника можно определить с помощью закона Ома, измерив напряжение и ток. Если известно удельное сопротивление проводника, его длина и поперечное сечение, то сопротивление можно вычислить с помощью формулы (4), не измеряя ток и напряжение.

Тест по теме

  1. Вопрос 1 из 10

Начать тест(новая вкладка)

Формулами

Параметры электрического тока всегда взаимосвязаны. Например, изменение величины нагрузки отображается на показателях других величин. Причем эти изменения подчиняются соответствующим законам, которые выражаются через формулы. Поэтому на практике для нахождения силы тока часто используют соответствующие формулы.

Через заряд и время

Вспомним определение (рис.1): электричество – это величина заряда, движимого силами электрического поля, преодолевающего за единицу времени условную плоскость проводника, называемую поперечным сечением проводника.

Рис. 1. Определение понятия сила тока

Таким образом, если известен электрический заряд, прошедший через проводник за определенное время, то не трудно найти величину этого заряда прошедшего за единицу времени, то есть: I = q/t

Через мощность и напряжение

В паспорте электроприбора обычно указывается его номинальная мощность и параметры электрической сети, для работы с которой он предназначен. Имея в распоряжении эти данные, можно вычислить силу тока по формуле: I = P/U.

Данное выражение вытекает из формулы для расчета мощности: P = IU.

Через напряжение или мощность и сопротивление

Силу электричества на участке цепи определяют по закону Ома. Для этого необходимо знать следующие параметры: сопротивление и напряжение на этом участке. Тогда I = U/R. Если известна мощность нагрузки, то ее можно выразить через квадрат силы тока умноженной на сопротивление участка: P = I 2 R, откуда

Для полной цепи эту величину вычисляют по закону Ома, но с учетом параметров источника питания.

Через ЭДС, внутреннее сопротивление и нагрузку R

Применяя закон Ома, адаптированный для полной цепи, вы можете вычислить максимальный ток по формуле I = ε / (R+r′), если известны параметры:

  • внешнее сопротивление проводников (R);
  • ЭДС источника питания (ε);
  • внутреннее сопротивление источника, обладающего ЭДС (r′).

Закон Джоуля-Ленца

Казалось бы, что расчет силы тока по количеству тепла, выделяющегося в результате нагревания проводника, не имеет практического применения. Однако это не так. Рассмотрим это на примере.

Пусть требуется найти силу тока во время работы электрочайника. Для этого доведите до кипения 1 кг воды и засеките время в секундах. Предположим, начальная температура составляла 10 ºС. Тогда Q = Cm(τ – τ) = 4200 Дж/кг× 1 кг (100 – 10) = 378 000 Дж.

Рис. 2. Закон Джоуля-Ленца

Из закона Джоуля-Ленца (изображение на рис. 2) вытекает формула:

Измерив сопротивление электроприбора и подставив значения в формулу, получим величину потребляемого тока.

Сопротивление проводника

Так почему бы все эти свойства не применить также к проводнику? Чем тоньше и длиннее проводник, тем больше его сопротивление электрическому току. Большую роль играет также материал, из которого он изготовлен.

Поэтому, окончательная формула будет принимать вид

В технике до сих пор применяется устаревшая единица измерения удельного сопротивления Ом × мм 2 /м. Чтобы перевести в Ом × м, достаточно умножить на 10 -6 , так как 1 мм 2 =10 -6 м 2 .

удельное сопротивление веществ

Как вы видите из таблицы выше, самым маленьким удельным сопротивлением обладает серебро, поэтому провод из серебра будет наилучшим проводником. Ну а самым распространенными и дешевыми проводниками являются медь и алюминий. Именно эти два металла в основном используются во всей электронной и электротехнической промышленности.

Вещества, которые оказывают наименьшее сопротивление электрическому току и обладают очень малым сопротивлением называются проводниками, а вещества, которые обладают ну очень большим сопротивлением электрическому току и почти его не пропускают через себя, называются диэлектриками. Между ними стоит класс полупроводников.

ФИЗИКА

§ 3.15. Сила сопротивления при движении тел в жидкостях и газах

При движении твердого тела в жидкости или газе или при движении одного слоя жидкости (газа) относительно другого тоже возникает сила, тормозящая движение, — сила жидкого трения или сила сопротивления.

Сила сопротивления направлена параллельно поверхности соприкосновения твердого тела с жидкостью (газом) в сторону, противоположную скорости тела относительно среды, и тормозит движение(1).

Сила сопротивления (жидкого трения) обычно значительно меньше силы сухого трения. Именно поэтому для уменьшения сил трения между движущимися деталями машин применяют смазку.

Главная особенность силы сопротивления состоит в том, что она появляется только при относительном движении тела и окружающей среды. Сила трения покоя в жидкостях и газах полностью отсутствует. Это приводит к тому, что усилием рук можно сдвинуть тяжелое тело, например баржу, в то время как сдвинуть с места, скажем, гусеничный трактор усилием рук просто невозможно.

Убедитесь в том, что плавающий деревянный брусок сразу же придет в движение, если на него слегка подуть. Попробуйте проделать то же самое с бруском, лежащим на столе.

Модуль силы сопротивления c зависит от размеров, формы и состояния поверхности тела, свойств (вязкости) среды (жидкости или газа), в которой движется тело, и, наконец, от относительной скорости движения тела и среды.

Для того чтобы уменьшить силу сопротивления среды, телу придают обтекаемую форму. Наиболее выгодна в этом отношении сигарообразная форма (рис. 3.40), близкая к форме падающей капли дождя или рыбы.

Рис. 3.40

Влияние формы тела на силу сопротивления наглядно показано на рисунке 3.41. Модуль силы сопротивления цилиндра обозначим через . Конусообразная насадка к цилиндру уменьшает силу сопротивления от 1/2 до 1/4 в зависимости от размера угла при вершине конуса. Сглаженная насадка доводит силу сопротивления до 1/5. Наконец, если придать телу сигарообразную форму, то при том же поперечном сечении сила сопротивления уменьшается до 1/25. По сравнению с телом сигарообразной формы сила сопротивления для шара (имеющего такую же площадь поперечного сечения) больше в несколько раз, а для тонкого диска, плоскость которого перпендикулярна направлению скорости, — в несколько десятков раз. Особенно велика сила сопротивления, возникающая при движении полусферы вогнутой стороной вперед. По этой причине парашюты имеют часто форму полусферы.

Рис. 3.41

Примерный характер зависимости модуля силы сопротивления от модуля относительной скорости тела приведен на рисунке 3.42. Если тело неподвижно относительно вязкой среды (относительная скорость равна нулю), то сила сопротивления равна нулю. С увеличением относительной скорости сила сопротивления растет медленно, а потом все быстрее и быстрее.

Рис. 3.42

При малых скоростях движения в жидкости (газе) силу сопротивления можно считать приближенно прямо пропорциональной скорости движения тела относительно среды:

где k1 — коэффициент сопротивления, зависящий от формы, размеров, состояния поверхности тела и свойств среды — ее вязкости. Коэффициент k2 в СИ выражается в Н • с/м = кг/с. Его значение определяют опытным путем.

При больших скоростях относительного движения сила сопротивления пропорциональна квадрату скорости:

где коэффициент сопротивления k2 выражается в Н • с2/м2 = = кг/м.

Какую именно формулу следует применять в данном конкретном случае, устанавливают опытным путем. При падении тел в воздухе сила сопротивления становится пропорциональной квадрату скорости практически с самого начала падения.

При ускоренном движении тела в жидкости для учета воздействия жидкости на это тело надо к массе тела прибавить так называемую присоединенную массу. Присоединенная масса зависит от формы тела и плотности среды. В дальнейшем при решении задач присоединенную массу мы учитывать не будем.

Жидкое трение возникает между поверхностью твердого тела и окружающей его жидкой или газообразной средой, в которой оно движется. При медленном движении сила сопротивления пропорциональна скорости, а при быстром — квадрату скорости.

(1) Впрочем, движущийся поток воды или воздуха может увлекать за собой тело. Например, когда ветер гонит опавшие листья, то сила трения со стороны воздуха направлена по движению листьев. Но и в этом случае она противоположна скорости движения тела (листьев) относительно среды (воздуха). В приведенном примере воздух и листья, хотя и движутся в одном направлении, но скорость воздуха больше, листья отстают от ветра.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector